Эталонная проверочная модель расчета полупроводникового диода Шоттки

Bridget Paulus 10/09/2018
Share this on Facebook Share this on Twitter Share this on LinkedIn

Диоды Шоттки — одни из самых старых полупроводниковых элементов, которые до сих пор используются в современных устройствах, в том числе в компьютерах и радарах. Для полной уверенности в корректной работе диода Шоттки, инженерам необходимо учитывать при проектировании такие факторы, как плотность тока и высоту потенциального барьера. Приведенная ниже эталонная модель подтверждает, что программный пакет COMSOL Multiphysics® с модулем расширения Полупроводники хорошо подходит для решения таких задач.

Краткая история диода Шоттки

Принцип работы диода Шоттки был впервые продемонстрирован в 1874 году Карлом Фердинандом Брауном. Соединив металлический провод и галеновый кристалл (который играл роль полупроводника), Браун создал диод с точечным контактом, который превращал переменный ток в постоянный (т.е. выпрямлял ток). Это устройство было одним из первых экземпляров и концептов полупроводникового диода, но работа Брауна не привлекла особого внимания, т.к. в то время для нее не нашлось практических применений.

Изобретение радио создало спрос на полупроводниковые диоды, или, как их называли в то время, кристаллические детекторы. В 1901 году индийский профессор физики Джагадиш Чандра Бос показал, что диод чувствителен к радиоволнам. Пять лет спустя Гринлиф Уиттер Пиккард запатентовал кристаллический детектор «кошачий ус», который широко использовался в радиотехнике вплоть до 1920-х годов. Такой диод состоял из тонкого металлического провода (напоминаущего кошачий ус), который находился в контакте с кристаллом кремния. Подстраивая положение провода, можно было ловить радиосигнал и настраивать радиоприемник.

Фотография детектора с «кошачьим усом».
Детектор «кошачий ус», который использовался в кристаллическом радиоприемнике. Автор изображения — JA.Davidson, изображение доступно на Викискладе.

В 1930-х годах физик Вальтер Шоттки установил, что в точке соприкосновения металла и полупроводника возникает потенциальный барьер. Его работа привела к появлению диодов Шоттки — и дала им имя. Эти диоды также называют диодами с барьером Шоттки, диодами с горячими носителями или с горячими электронами. Как и другие диоды, они пропускают ток в одном направлении благодаря потенциальному барьеру, возникающему при контакте (прямое смещение), и не пропускают ток в обратном направлении (обратное смещение).

Применение и достоинства диодов Шоттки

По сравнению с другими современными типами диодов у диодов Шоттки есть несколько преимуществ . Например, их отличают высокая плотность тока и малое падение напряжения в прямом направлении, так что они потребляют мало энергии и выделяют меньше тепла. Таким образом, они эффективнее и компактнее других диодов, и их можно использовать с небольшими по размеру радиаторами. Помимо этого, диоды Шоттки быстро переключаются, быстро возвращаются в состояние готовности и отличаются малой емкостью. Эти свойства важны в таких прикладных задачах, как:

  • Зарядка компьютеров и смартфонов
  • Смесители частот для СВЧ-радаров
  • Выпрямление мощности для приводов двигателей и светодиодов
  • Защита транзисторов от насыщения
  • Защита от разряда аккумулятора в фотоэлементах.

Во всех указанных приложениях инженеры смогут проводить проектирование диодов в специализированном пакете для расчета полупроводников и численно определять такие ключевые характеристики устройств как, например, плотность тока и напряжение. Давайте рассмотрим для примера эталонную проверочную модель.

Численное проектирование диода Шоттки

Эталонная проверочная модели "Контакт Шоттки" описывает поведение простого диода Шоттки при смещении в прямом направлении. В геометрии модели воспроизведена полупроводниковая пластина из кремния (внизу), на которую нанесен слой вольфрама (вверху). Обратите внимание, что для задания свойств кремния вы можете использовать настройки программного пакета COMSOL® по умолчанию.

Геометрия модели диода Шоттки.
Геометрия простейшего диода Шоттки.

При изучении диода важно правильно подобрать высоту потенциального барьера, создаваемого контактом Шоттки: от нее зависит, будет ли диод работать. Высота барьера зависит от структуры перехода «металл — полупроводник», и ее непросто определить. В этой модели используется идеальное значение для высоты потенциального барьера, рассчитанное на основе стандартных свойств кремния и работы выхода вольфрама (4,72 В), которое равно 0,67 В. Используя такой «идеальный» контакт Шоттки, мы упрощаем модель.

Так мы можем рассчитать ток, текущий через контакт между двумя материалами, не учитывая снижение барьера за счет снижения сил зеркального изображения, туннелирования, влияния диффузии и поверхностных состояний. Этот ток определяется в первую очередь термоэлектронным вкладом, зависимость которого от приложенного напряжения и плотности тока показана на графике ниже.

Одномерный график сравнения расчетных характеристик, полученных в модели диода Шоттки, и экспериментальных данных.
Сравнение расчетной модели (сплошная линия) и экспериментальных данных (круглые маркеры) о плотности тока в диоде Шоттки с прямым смещением.

Как вы видите, результаты эталонной проверочной модели хорошо согласуются с экспериментальными данными, показывая, что свойства контакта Шоттки можно точно моделировать в программном пакете COMSOL Multiphysics с помощью модуля расширения Полупроводники.

Дальнейшие шаги

Попробуйте сами промоделировать диоды Шоттки с помощью этого примера. Нажмите на кнопку ниже, чтобы перейти в Библиотеку моделей и приложений, в которой вы найдете пошаговые инструкции по сборке модели. Если у вас есть учетная запись COMSOL Access и действующая лицензия на программное обеспечение, вы можете загрузить MPH-файлы для этой модели.

Узнайте подробнее о моделировании полупроводников в корпоративном блоге COMSOL:


Загрузка комментариев...

Темы публикаций


Теги

3D печать Cерия "Гибридное моделирование" Введение в среду разработки приложений Видео Волновые электромагнитные процессы Глазами пользователя Графен Интернет вещей Кластеры Моделирование высокочастотных электромагнитных явлений на различных пространственных масштабах Модуль AC/DC Модуль MEMS Модуль Акустика Модуль Волновая оптика Модуль Геометрическая оптика Модуль Композитные материалы Модуль Механика конструкций Модуль Миксер Модуль Нелинейные конструкционные материалы Модуль Оптимизация Модуль Плазма Модуль Полупроводники Модуль Радиочастоты Модуль Роторная динамика Модуль Течение в трубопроводах Модуль Химические реакции Модуль аккумуляторов и топливных элементов Охлаждение испарением Пищевые технологии Рубрика Решатели Серия "Геотермальная энергия" Серия "Конструкционные материалы" Серия "Электрические машины" Серия “Моделирование зубчатых передач” Сертифицированные консультанты Технический контент Указания по применению модуле Теплопередача модуль Вычислительная гидродинамика физика спорта