Как моделировать устройства, основанные на электродинамической магнитной левитации

Nirmal Paudel 28/11/2016

Электродинамическая магнитная левитация может возникнуть при наличии переменного магнитного поля в окрестности проводящего материала. В этой статье мы расскажем и покажем, как моделировать магнитную левитацию, на двух примерах: верификационной задаче TEAM про устройство, основанное электродинамической левитации и модели электродинамического колеса.

Читать дальше

Nirmal Paudel 18/07/2016

В этой заметке мы рассмотрим задачу моделирования трёхфазного асинхронного двигателя, описанную как проблема №30a в Testing Electromagnetic Analysis Methods (TEAM) (от общества Compumag). Мы покажем, как моделировать асинхронный двигатель в 2D с использованием физического интерфейса Rotating Machinery, Magnetic (Магнитные вращающиеся механизмы) и решателя во временной области. Изучим динамику пуска двигателя, объединив электромагнитный расчёт с динамикой ротора, учитывая при этом инерционные эффекты. В конце мы сравним результаты моделирования в COMSOL Multiphysics с верификационными данными.

Читать дальше

Nirmal Paudel 07/06/2016

Электромагнитный поршень — это электромеханическое устройство, которое преобразовывает электрическую энергию в линейное механическое движение. Примерами могут служить закрытые электромагнитные клапаны, а также закрытые и открытые электромагнитные реле. В этой заметке мы покажем, как моделировать электромагнитный поршень и его динамику. В данном примере он состоит из многовитковой катушки, магнитного сердечника, немагнитных направляющих и магнитного поршня.

Читать дальше

Nirmal Paudel 26/04/2016

Магнитные приводы представляют собой бесконтакные механизмы для преобразования крутящего момента в скорость перемещения, используя постоянные магниты или электромагниты. Они применяются в различных возобновляемых источниках энергии и легко согласовываются с техническими параметрами электромагнитного генератора, повышая тем самым эффективность источников ветровой энергии, приливной энергии океана, и маховиковых накопителей энергии. В отличие от своих механических аналогов, магнитные приводы обладают внутренней защитой от перегрузок, имеют высокую надежность за счет функционирования при отсутствии трения, и не требуют смазки. Сегодня мы рассмотрим, каким образом моделировать магнитные […]

Читать дальше

Nirmal Paudel 18/02/2016

В предыдущей записи мы показали модели вращающихся электрических устройств, такие как двигатели и генераторы с использованием интерфейса Вращающиеся Механизмы, Магнетизм (Rotating Machinery, Magnetic) среды COMSOL Multiphysics. Сегодня мы сравним результаты 3D-модели генератора и аналогичной 2D-модели. Также обратим внимание на понятия секторной симметрии и периодических граничных условий и примеры, иллюстрирующие их использование.

Читать дальше

Nirmal Paudel 28/07/2015

Электродинамические или магнитные подшипники используются во многих отраслях промышленности, включая производство электроэнергии, переработку нефти, в турбинных механизмах, насосах и инерциальных системах накопления энергии. В отличие от механических подшипников, такие подшипники позволяют подвижные нагрузки без физического контакта за счет магнитной левитации. Магнитные подшипники ценятся за отсутствие трения и возможность работы без смазки и, благодаря низким эксплуатационным расходам, являются альтернативой механическим подшипникам, при этом имея более долгий срок службы. Давайте ознакомимся с техниками вычисления параметров конструкции, таких как магнитные силы, вращающий момент […]

Читать дальше


Темы публикаций


Теги

3D печать Cерия "Гибридное моделирование" Введение в среду разработки приложений Видео Волновые электромагнитные процессы Глазами пользователя Графен Интернет вещей Кластеры Моделирование высокочастотных электромагнитных явлений на различных пространственных масштабах Модуль AC/DC Модуль CFD Модуль MEMS Модуль Акустика Модуль Геометрическая оптика Модуль Механика конструкций Модуль Нелинейные конструкционные материалы Модуль Оптимизация Модуль Плазма Модуль Радиочастоты Модуль Роторная динамика Модуль Химические реакции Охлаждение испарением Пищевые технологии Рубрика Решатели Серия "Геотермальная энергия" Серия "Конструкционные материалы" Серия "Электрические машины" Серия “Моделирование зубчатых передач” Сертифицированные консультанты Термовязкостная акустика Технический контент Указания по применению модуле Теплопередача модуль Вычислительная гидродинамика физика спорта