Как моделировать вибрации и уровень шума в коробке передач с помощью COMSOL Multiphysics®

Pawan Soami 23/03/2017
Share this on Facebook Share this on Twitter Share this on LinkedIn

Зубчатые передачи используются в таких устройствах, как часы, промышленное оборудование, музыкальные шкатулки, велосипеды и автомобили. Коробка передач является основным источником вибраций и шума в таких устройствах. Для эффективного снижения уровня шума в коробке передач необходимо выполнить виброакустическое моделирование с последующим улучшением конструкции. Давайте посмотрим, как можно использовать программное обеспечение COMSOL Multiphysics® для создания более тихих систем передач.

Расчёт уровня шума, вибрации и жёсткости в коробке передач

Коробка передач обычно состоит из зубчатых шестерней, валов, подшипников и корпуса. При работе коробка передач сильно шумит по двум причинам:

  1. Передача нежелательных поперечных и осевых сил на подшипники и корпус при зацеплении одного вала с другим
  2. Люфт в различных частях коробки передач: в зацеплении зубчатых шестерней, в подшипниках и в корпусе

Самым шумным узлом в коробке передач является зацепление зубчатых шестерней. Ниже показана схема возникновения и распространения шума в окружающую среду.

Схема возникновения и распространения шума в окружающую среду.

Свист и треск зубчатых шестерёнок

Можно выделить две разновидности шума, возникающего при зацеплении зубчатых шестерней: свист и треск.

Первый — один из самых распространённых шумов в коробке передач, особенно когда двигатель работает под нагрузкой. Он возникает из-за вибрации в коробке передач вследствие погрешности зубчатого зацепления при включении передачи, а также из-за различия жёсткости в зацеплении. Свист зубчатых шестерней возникает при частоте зацепления и обычно достигает уровня шума от 50 до 90 dB по относительной шкале уровня звукового давления при измерении на расстоянии одного метра.

Треск зубчатых шестерней обычно возникает при работе двигателя без нагрузки. Примерами могут служить дизельные автобусы и грузовики, работающие на холостом ходу. Треск — это ударная разновидность шума, вызванная работой коробки передач на холостом ходу. Одним из параметров зубчатой шестерни, который непосредственно влияет на треск, является окружной зазор, необходимый для смазки. Простое регулирование величины этого зазора может снизить уровень шума.

Погрешность зубчатого зацепления

Что же такое погрешность зубчатого зацепления? Когда две шестерни имеют идеальный эвольвентный профиль, вращение выходной шестерни зависит от крутящего момента на входной шестерне и передаточного отношения. Постоянное вращение входной шестерни приводит к постоянному вращению выходной. Существуют различные причины модификации формы зуба шестерни, такие как износ, смещение по оси, модификация профиля ножки и вершины зубца. Такие изменения могут привести к отклонению по центральной оси выходной шестерни при вращении. Это и есть погрешность зубчатого зацепления (ПЗЗ). При динамической нагрузке вибрация зубьев в шестернях также приводит к погрешности зубчатого зацепления. Комбинированная погрешность называется динамической погрешностью зубчатого зацепления (ДПЗЗ).

Моделирование уровня шума и вибраций в коробке передач в COMSOL Multiphysics®

Снижение шума до приемлемого уровня — сложная задача, особенно в современных коробках передач, которые состоят из множества работающих одновременно зубчатых шестерней. Правильно смоделировав данный механизм, мы можем разработать более тихую коробку передач. COMSOL Multiphysics позволяет разработчикам точно обозначить проблемы и предложить методы их решения, учитывая конструктивные ограничения. С помощью данного программного обеспечения мы можем оптимизировать существующие разработки, чтобы уменьшить уровень шума и, более того, сделать это задолго до стадии производства.

Скриншот рабочего окна и интерфейса COMSOL Multiphysics с изображённой коробкой передач.
Модель коробки передач в рабочем интерфейсе COMSOL.

Рассмотрим пятиступенчатую синхронизированную механическую коробку переключения передач (МКПП) в автомобиле, чтобы изучить распространение вибрации и шума. МКПП в автомобиле служит для передачи крутящего момента от двигателя к колёсам. Рисунок коробки передач с указанием основных элементов.
Геометрия пятиступенчатой МКПП в автомобиле.

Для численного моделирования данной задачи мы будем использовать два физических интерфейса:

  1. Механических нализ многотельных систем
  2. Акустический анализ

Во временной области мы рассчитаем динамику вибрации зубчатых шестерней и корпуса. Входными данными будут являться частота вращения двигателя и выходной крутящий момент. В акустической части анализа мы рассчитаем уровни звукового давления вокруг коробки передач для заданного диапазона частот, используя нормальную составляющую ускорения корпуса в качестве источника шума.

Анализ вибраций в коробке передач

В начале рассмотрим механизм синхронизированной коробки передач. В ней используются шестерни с косыми зубцами для передачи крутящего момента от начала приводного вала через обратный вал к концу приводного вала.

Рисунок пятиступенчатой коробки передач с указанием основных элементов для механического анализа.
Механизм синхронизированной пятиступенчатой коробки передач без учёта синхронизирующих колец, соединяющих шестерни с основным валом.

Параметры шестерней представлены в таблице:

Параметр Значение
Угол зубчатого зацепления 25 [deg]
Угол наклона линии зуба 30 [deg]
Жёсткость зубчатых шестерней 1e8 [N/m]
Коэффициент перекрытия 1.25

Шестерни на приводном валу могут вращаться свободно, в то время как шестерни на обратном валу закреплены. На валу фиксируется только одна передача. На практике это достигается при помощи синхронизирующих колец. В модели для зацепления и расцепления зубчатых шестерней с приводным валом используются шарнирные соединения (hinge joints) с условием включения.

Валы задаются жёсткими и прикреплёнными к корпусу через шарнирное соединение. Сам корпус задаётся гибким, стоящим на земле и прикреплённым одним концом к двигателю. Данные, необходимые для расчёта движения, следующие:

Входная величина Значение
Скорость вращения двигателя 5000 [об/мин]
Крутящий момент 1000 [Н-м]
Количество передач 5

Задав все необходимые параметры, можно выполнить расчёт и получить анимацию распределения вибраций в корпусе, как показано ниже:

 

Анимация распределения напряжений по Мизесу в корпусе и скорости различных шестерней.

Выберем произвольную точку на корпусе, чтобы построить графики нормальной составляющей ускорения. На левом графике ниже показана зависимость нормальной составляющей ускорения от угла поворота приводного вала. Разложим данную функцию в частотной области с помощью преобразования Фурье (используя FFT-решатель). На правом графике ниже показан частотный спектр вибраций. По графику видно, что нормальная составляющая ускорения содержит несколько резонансных пиков. Вибрации максимальны в диапазоне частот от 1000 до 3000 Гц.

Зависимость нормальной составляющей ускорения от угла поворота приводного вала в произвольной точке на корпусе.
Разложение нормальной составляющей ускорения в произвольной точке на корпусе в частотной области.

Зависимость нормальной составляющей ускорения от угла поворота приводного вала и её разложение в частотный спектр Фурье в произвольной точке на корпусе.

Расчёт уровня шума в коробке передач

Теперь давайте разберём, как смоделировать распространение шума в COMSOL Multiphysics. Для начала ограничим область вокруг коробки передач воздушной сферой, чтобы в ней моделировать распространение шума.

Для связи двух физических интерфейсов добавим одностороннюю взаимосвязь, полагая, что внешняя среда — это воздух. Такая взаимосвязь означает, что вибрации корпуса влияют на окружающую среду, в то время как влиянием акустических волн на конструкцию мы пренебрегаем. Это позволит быстрее решить нашу задачу.

Акустический анализ выполняется в частотном диапазоне. Поскольку расчёт многотельных систем производится во временной области, необходимо преобразовать ускорение корпуса из временной области в частотную. Для этого используется преобразование Фурье (FFT-решатель).

Геометрическая модель коробки передач, окружённая воздушной сферой с двумя микрофонами, для акустического расчёта.
Воздушная сфера, ограничивающая область вокруг коробки передач для акустического расчёта. Показаны два микрофона, измеряющие уровень шума.

В качестве источника шума используется нормальная составляющая ускорения, которая применяется на внутренние границы акустической области. Чтобы не допустить каких-либо отражений от внешних границ акустической области, добавим узел Spherical Wave Radiation (Сферическое условие излучения). Настроив модель таким образом, мы можем выполнить акустический расчёт и посмотреть на уровни звукового давления на поверхности коробки передач, а также в области вокруг неё на разных частотах. Для лучшего понимания направленности шума, добавим графики распределения звукового давления в разных плоскостях при различных частотах.

Распределение уровня звукового давления вокруг коробки передач.
График скалярного поля уровня звукового давления на поверхности коробки передач.

Уровень звукового давления на поверхности коробки передач (справа) и вокруг неё (слева).

Уровень звукового давления в дальней зоне в плоскости xy (диаграмма направленности).
Уровень звукового давления в дальней зоне в плоскости xz.

Уровень звукового давления на расстоянии 1м в плоскости xy (слева) и в плоскости xz (справа).

Теперь рассмотрим уровни звукового давления. Как раз для этого мы расположили два микрофона в воздушном пространстве.

Микрофон Размещение Расположение
1 Сбоку от коробки передач (0, -0.5 m, 0)
2 Над коробкой передач (0, 0, 0.75 m)

Расположение микрофонов задаётся в узле Параметры и может быть изменено в любой момент без пересчёта модели.

Частотный спектр давления в месте расположения микрофонов в близи коробки передач.
Частотный спектр амплитуд давления в местах расположения микрофонов.

Вышеприведённый график даёт хорошее представление о частотной составляющей уровня шума. Однако, было бы ещё лучше, если бы мы могли слышать шум, поступающий на микрофон, прямо как в физическом эксперименте. Это возможно реализовать, если написать спциальный скрипт на языке Java®, используя данные об амплитуде и фазе звукового давления, как функцию от частоты.

Давайте послушаем звуковые файлы, в которые записыван шум с двух микрофонов…

Мы уже рассмотрели результаты акустического моделирования на различных частотах. Было бы здорово увидеть данные результаты во временной области. Представим результаты во временной области с помощью преобразователя Фурье (FFT-решатель), чтобы затем визуализировать распространение в динамике акустических волн вокруг коробки передач.

Анимация распространения акустических волн вокруг коробки передач.

Проектирование менее шумной коробки передач

В данной заметке мы рассмотрели методику расчёта шума от коробки передач с помощью комбинации механического анализа многотельной системы и последующего акустического исследования. Данная методика может быть использована перед началом производственного процесса для создания менее шумных коробок передач в рабочем диапазоне скоростей. Новые функциональные возможности в версии 5.3 пакета COMSOL Multiphysics® позволяют записывать реальный шум в работающей коробке передач, что приближает моделирование к настоящему физическому эксперименту.

Дополнительные ресурсы по моделированию многотельных систем и зубчатых передач


Загрузка комментариев...

Темы публикаций


Теги

3D печать Cерия "Гибридное моделирование" Введение в среду разработки приложений Видео Волновые электромагнитные процессы Глазами пользователя Графен Интернет вещей Кластеры Моделирование высокочастотных электромагнитных явлений на различных пространственных масштабах Модуль AC/DC Модуль MEMS Модуль Акустика Модуль Волновая оптика Модуль Геометрическая оптика Модуль Композитные материалы Модуль Механика конструкций Модуль Миксер Модуль Нелинейные конструкционные материалы Модуль Оптимизация Модуль Плазма Модуль Полупроводники Модуль Радиочастоты Модуль Роторная динамика Модуль Течение в трубопроводах Модуль Химические реакции Модуль аккумуляторов и топливных элементов Охлаждение испарением Пищевые технологии Рубрика Решатели Серия "Геотермальная энергия" Серия "Конструкционные материалы" Серия "Электрические машины" Серия “Моделирование зубчатых передач” Сертифицированные консультанты Технический контент Указания по применению модуле Теплопередача модуль Вычислительная гидродинамика физика спорта