See How Multiphysics Simulation Is Used in Research and Development

Engineers, researchers, and scientists across industries use multiphysics simulation to research and develop innovative product designs and processes. Find inspiration in technical papers and presentations they have presented at the COMSOL Conference. Browse the selection below or use the Quick Search tool to find a specific presentation or filter by application area.


View the COMSOL Conference 2023 Collection

Structural Mechanics and Thermal Stressesx

Simulation of Impact Damage in a Composite Plate and Its Detection

V. Pavelko[1], I. Pavelko[1], M. Smolyaninovs[1], H. Pffeifer[2], M. Wevers[2]
[1]Riga Technical University, Riga, Latvia
[2]Catholic University Leuven, Leuven, Belgium

A problem of damage prediction in aircraft structure and its non-destructive evaluation is very important for aircraft structural health assessment. The analysis of the features of direct impact of thin-walled laminate component of aircraft was performed by COMSOL Multiphysics software. ... Read More

Multiphysics Simulations for the Design of Probe-Heads Micro-Needles

A. Corigliano[1], A. Courard[1], G. Cocchetti[1], P. Gagliardi[1], L. Magagnin[1], R. Vallauri[2], D. Acconcia[2]
[1]Politecnico di Milano, Milano, Italy
[2]Technoprobe, Cernusco Lombardone, Italy

The paper presents recent results concerning the experimental mechanical characterization, the numerical modeling and the design of micro-needles used in the construction of probe heads for wafer testing. A fully coupled electro-thermal model was created using COMSOL and combined to a ... Read More

Assessment of Anterior Spinal Artery Blood Flow following Spinal Cord Injury

M. Alshareef[1], A. Alshareef[2], V. Krishna[3], M. Kindy[3], T. Shazly[4]
[1]College of Medicine, Medical University of South Carolina, Charleston, SC, USA
[2]Department of Biomedical Engineering, Duke University, Durham, NC, USA
[3]Department of Neurosurgery, Medical University of South Carolina, Charleston, SC, USA
[4]Department of Mechanical Engineering, University of South Carolina, Columbia, SC, USA

The incidence of spinal cord injury (SCI) in the US is approximately 12,000 individuals annually, due to various forms of trauma and disease. Diminished flow over a prolonged period of time can cause permanent spinal damage. We constructed a 3D finite element model of the spinal cord to ... Read More

Finite Element Solution of Nonlinear Transient Rock Damage with Application in Geomechanics of Oil and Gas Reservoirs

S. Enayatpour[1], T. Patzek[1]
[1]The University of Texas at Austin, Austin, TX, USA

The increasing energy demand calls for advances in technology which translate into more accurate and complex simulations of physical problems. Understanding the rock damage is essential to understanding the geomechanics of hydrocarbon reservoirs. The fragile microstructure of some ... Read More

Design Geometry Optimization of Vertical Cracks in Thermal Barrier Coatings from Simulated Thermal and Mechanical Behavior

C. Heveran[1], J. Xu[1], D. Cole[2], S. Basu[1], V. Sarin[1]
[1]Division of Materials Science and Engineering, Boston University, Brookline, MA, USA
[2]Department of Mechanical Engineering, Boston University, Brookline, MA, USA

Turbine blades are coated with thermal barrier coatings (TBCs) to reduce operating temperature. TBCs experience stress from coefficient of thermal expansion mismatch with the bond-coat and substrate. Vertical cracks are thought to offer stress relief, but influence of crack geometry on ... Read More

Design of a Pressure Sensor to Monitor Teeth Grinding

I.M. Abdel-Motaleb[1], K. Ravanasa[1], K.J. Soderholm[2]
[1]Department of Electrical Engineering, Northern Illinois University, DeKalb, IL, USA
[2]Department of Restorative Dental Sciences, College of Dentistry, University of Florida, Gainesville, FL USA

Studying teeth grinding behavior and other oral conditions requires the ability to accurately measure the pressure on the teeth. Placing a sensor in the mouth requires small size devices with powering and measurement techniques that do not hinder the normal life of the patient. To meet ... Read More

Analysis of Multiphysics Problems Related to Energy Piles

E. Evgin[1], J.A.I. Sedano [1], Z. Fu[1]
[1]University of Ottawa, Ottawa, ON, Canada

Energy piles transfer the mechanical loads from buildings to the ground and serve as heat exchangers. Temperature changes in the ground influence its moisture content. This paper examines the effect of soil moisture content on the shaft resistance of a pile. Tests were carried out in ... Read More

Earth Pressure as a Boundary Condition to Bridge Piers and Abutments

M. Quinn[1], D. Whitlow[1], O.D.S. Taylor[1], M.H. McKenna[1]
[1] Engineer Resource and Development Center, United States Army Corps of Engineers, Vicksburg, MS, USA

Bridge piers and abutments makeup the bridge substructure and transmit loads from the superstructure to the bridge foundation material (Figure 1). The bridge abutment serves three purposes: to provide vertical support to the bridge superstructure where the bridge ends, to connect the ... Read More

Development and Production of a Box for Storage and Shipping of HDIs in the Upgrade of the CMS Experiment

F. Noto[1], S. Costa[2], N. Giudice[2], F. Librizzi[3], A. Rapicavoli[2], M.A. Saizu[4], V. Sparti[3]
[1]Instituto Nazionale Fisica Nucleare, Sezione di Catania, Catania, Italy; Dipartimento di Fisica ed Astronomia, Università di Catania, Catania, Italy
[2] Dipartimento di Fisica ed Astronomia, Instituto Nazionale Fisica Nucleare, Sezione di Catania, Catania, Italy; Università di Catania, Catania, Italy
[3]Instituto Nazionale Fisica Nucleare - Sezione di Catania, Catania, Italy
[4]Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest-Magurele, Romania

The Large Hadron Collider at CERN has begun operations at 7 TeV center of mass energy. CERN plans to run at this energy until the end of 2012 with the goal of providing an integrated luminosity of a few fb?¹ to the CMS and ATLAS experiments. The LHC will then shut down for 1.5 to 2 years ... Read More

A Computational Approach for Optimizing the First Flyer Using COMSOL Multiphysics

A.H. Aziz[1], H. Pourzand[1], A.K. Singh[1]
[1]Pennsylvania State University, University Park, PA, USA

COMSOL Multiphysics software was used to structurally optimize the Wright brothers’ flyer. The flyer was drawn in SolidWorks, imported and meshed in COMSOL. COMSOL Solid Mechanics module was used to analyze the flyer. Four of the sixteen struts were removed yet the structural ... Read More