Здесь представлены презентации, которые демонстрировались на конференциях COMSOL по всему миру. В презентациях рассказывается о передовых исследованиях и инновационных продуктах, созданных с помощью COMSOL Multiphysics. Исследования относятся к различным отраслям и областям применения, включая электрические, механические, гидродинамические и химические дисциплины. Чтобы найти презентации из нужной области, воспользуйтесь функцией быстрого поиска.

Voltage and Capacitance analysis of EWOD system using COMSOL

D. Das[1], S. Sohail[1], S. Das[2], and K. Biswas[1]
[1]Electrical Engineering Department, IIT Kharagpur, India
[2]School of Medical Science and Technology, IIT Kharagpur, India

Electrowetting on Dielectrics (EWOD)systems is widely practiced digital microfluidic technique, used in Lab-on-a-Chip (LoC) system for biomedical application. In EWOD, with applied potential, the droplet minimizes its surface energy by transiting towards the actuated electrode. The problems with EWOD device for biological sample are that it will damage the cells if applied voltage across it ...

Using COMSOL Multiphysics® Software and the Application Builder for Neutron Transport in Discrete Ordinates

C. J. Hurt [1], J. D. Freels [2],
[1] University of Tennessee, Knoxville, TN, USA
[2] Oak Ridge National Laboratory, Oak Ridge, TN, USA

Introduction: The numerical solution to the neutron transport equation is employed to study a variety of problems in nuclear engineering applications, including for both eigenvalue and fixed source studies. Historically, multiphysics analysis at the HFIR has utilized these solutions to include thermal-structural and thermal hydraulic physics with a weak coupling due to the limited ...

Model and App of Hydrophobic Meshes Used in Oil Spill Recovery

O. Silva [1], E. Coene [1], J. Molinero [1], B. Shafei [1]
[1] Amphos 21 Consulting S.L., Barcelona, Spain

Hydrophobic meshes are a new, promising technique for the recovery of spilled oil in the ocean. They allow to recover and store oil, while filtering it from the surrounding water. They are clean, efficient and can be used in continuously. These meshes have one drawback, however: if they are submerged too deep under the water level, the high pressure will cause presence of water in the recovered ...

Electromagnetic Actuators Modeling, Simulation and Optimization: Review of Methods and Their Application for Switching Devices - new

O. Craciun[1], V. Biagini[1], G. Stengel[1], C. Reuber[2], C. Chao[3], B. Funieru[3] , A. Binder[3]
[1]ABB Corporate Research, Ladenburg, Germany
[2]ABB AG Calor Emag Mittelspannungsprodukte
[3]TU Darmstadt, Department of Electrical Energy Conversion, Darmstadt, Germany

Electromagnetic actuators are representing one important component of ABB's medium voltage reclosers [1, 2]. Their performance is strongly influenced by the considered material properties as well as by the electronic control units that will power the actuator. Depending on the studied phenomena, different modeling, simulation and optimization methodologies are being used for medium voltage ...

Modeling a Lung-on-a-Chip Microdevice

M. J. Hancock [1], N. Elabbasi [1],
[1] Veryst Engineering, LLC., Needham, MA, USA

Organ-on-a-chip microdevices combine microfluidics, MEMS, and biotechnology techniques to mimic the multicellular architectures, tissue-tissue interfaces, physicochemical microenvironments, and vascular perfusion of the body.[1] Such devices are being developed to provide better levels of tissue and organ functionality compared with conventional cell culture systems, and have great potential to ...

A Time Dependent Dielectric Breakdown (TDDB) Model for Field Accelerated Low-K Breakdown Due To Copper Ions

R. Achanta, J. Plawsky, and W. Gill
Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA

We have simulated the copper ion concentration and internal electric field profiles in a dielectric material by solving the transient continuity/Poisson equations using COMSOL Multiphysics. We have shown that failure of dielectrics can be modeled if we assume that failure in Cu/SiO2/Si devices occurs due to a pile-up of copper ions at the cathode and the subsequent increase in electric field ...

Multiphysics Simulation of a Self-heating Paraffin Membrane Microactuator

P. Lazarou[1], C. Rotinat[1]
[1]CEA LIST/DIASI/LRI, Paris, France

A grand variety of microactuator technologies and demonstrators has been introduced during the last years. Of particular interest are the microactuators based on phase change materials and especially paraffin wax, which can volumetrically expand up to 15%, providing high force actuation. The object of this study is the numerical validation of a paraffin microactuator concept by coupling multiple ...

Multiphysics CAE Simulations of Casting Process for First-time-right Product Development

M. Hussain [1], Ramanathan S. [1], R. C. Thiagarajan [1],
[1] ATOA Scientific Technologies, Bengaluru, Karnataka, India

Casting product performance depends on material, flow, Process Temperature, Solidification, Shrinkage and residual stress. In a casting process, not all available resources are utilized effectively which results in low quality of casting, defects and metal wastage. Physics based modeling is increasingly used to optimize product performance, improve quality and reduce defects of casting products. ...

Estimation of Hydraulic Conductivity for a Heterogeneous Unsaturated Soil Using Electrical Resistivity and Level-Set Methods - new

T. K. Chou[1], M. Chouteau[1], J. S. Dubé[2]
[1]École Polytechnique de Montréal, Montréal, QC, Canada
[2]École de Technologie Supérieure, Montréal, QC, Canada

The estimation of the soil saturated hydraulic conductivity (Ks) is crucial in understanding water flow and transport of contaminants. There are many hydrological techniques available in determining this parameter (constant head method, in-situ soil analysis, etc...). While these techniques can provide quality data points, they are often limited by sparse data sampling and scale. Therefore ...

Interface Phenomena for a Multifunctional Air-Water Micro-Particle Collecting and Filtering System

E. Lacatus [1], A. Tudor [1], G. C. Alecu [1],
[1] Polytechnic University of Bucharest, Romania

The confinement clean rooms used in industry are susceptible to higher count of particles per cubic meter of air after the usual work program. To decrease the economic and technological effects of particle concentration a micro-cleaning device was elaborated. A first approach of a 3D model of the device was produced and different issues were found. Using COMSOL Multiphysics software to identify ...