Здесь представлены презентации, которые демонстрировались на конференциях COMSOL по всему миру. В презентациях рассказывается о передовых исследованиях и инновационных продуктах, созданных с помощью COMSOL Multiphysics. Исследования относятся к различным отраслям и областям применения, включая электрические, механические, гидродинамические и химические дисциплины. Чтобы найти презентации из нужной области, воспользуйтесь функцией быстрого поиска.

Level Set Method for Fully Thermal-Mechanical Coupled Simulations of Filling in Injection and Micro-Injection Molding Process

M. Moguedet[1], R. Le Goff[1], P. Namy[2], and Y. Béreaux[3]
[1]Pôle Européen de Plasturgie, Bellignat, France
[2]SIMTEC, Grenoble, France
[3]INSA de Lyon, Site de Plasturgie, Bellignat, France

In this work we tackle a more theoretical aspect of micro-injection molding, to better understand physics during the process, through numerical simulations of cavity filling. We developed a two phase flow approach by the use of COMSOL Multiphysics®. In a first step, a Level Set model is applied to several configurations: Newtonian and non Newtonian fluid (Cross viscosity law), coupled with a ...

Photo-Biological Reactor for Organic Waste Consumption and Hydrogen Production - new

L. F. de Souza[1]
[1]Universidade Federal do Paraná, Curitiba, Paraná, Brazil

A simple steady-state photo-fermentative biochemical model was developed using the COMSOL Multiphysics'® Transport of Diluted Species physics interface. A dimensionless model seeks optimal physical parameters based on given biochemical parameters found in literature. A parametric sweep of the physical parameters is enabled without altering the mesh. Other limitations can be easily added to this ...

Thermal Study of Valve Regulated Lead Acid Batteries and Electronics Chamber Used in Stand-Alone Street Lighting Applications - new

D. Groulx[1], J. Skaalum[1], T. Jamieson[1]
[1]Mechanical Engineering, Dalhousie University, Halifax, NS, Canada

This paper presents a study on the heat generation of Valve-Regulated Lead Acid (VRLA) batteries used in off-grid streetlighting applications from PoleCo, a Halifax based company. One goal of the project was to produce validated COMSOL® models of the enclosure that holds these VRLA batteries. This model can then be used to investigate methods of reducing the temperature of the batteries based on ...

Using COMSOL Multiphysics® Software and the Application Builder for Neutron Transport in Discrete Ordinates

C. J. Hurt [1], J. D. Freels [2],
[1] University of Tennessee, Knoxville, TN, USA
[2] Oak Ridge National Laboratory, Oak Ridge, TN, USA

Introduction: The numerical solution to the neutron transport equation is employed to study a variety of problems in nuclear engineering applications, including for both eigenvalue and fixed source studies. Historically, multiphysics analysis at the HFIR has utilized these solutions to include thermal-structural and thermal hydraulic physics with a weak coupling due to the limited ...

Numerical Study of Laminar Forced Convection Cooling of Circuit Board Mounted Heat Source Array

S. Durgam [1], S. P. Venkateshan [1], T. Sundararajan [1],
[1] Indian Institute of Technology Madras, Chennai, India

This paper deals with the numerical study of optimal distribution of rectangular heat sources populated on a substrate board for electronic cooling. The simulations are performed for laminar forced convection conjugate heat transfer with vertical orientation of substrate board. The laminar forced convection - conjugate heat transfer simulations are carried out using COMSOL Multiphysics® with ...

Model and App of Hydrophobic Meshes Used in Oil Spill Recovery

O. Silva [1], E. Coene [1], J. Molinero [1], B. Shafei [1]
[1] Amphos 21 Consulting S.L., Barcelona, Spain

Hydrophobic meshes are a new, promising technique for the recovery of spilled oil in the ocean. They allow to recover and store oil, while filtering it from the surrounding water. They are clean, efficient and can be used in continuously. These meshes have one drawback, however: if they are submerged too deep under the water level, the high pressure will cause presence of water in the recovered ...

Embedded Microfluidic/Thermoelectric Generation System for Self-Cooling of Electronic Devices - new

R. Kiflemariam[1], H. Fekramandi[1], C. Lin[1]
[1]Department of Mechanical & Materials Engineering, Florida International University, Miami, FL, USA

A 3D electro-conjugate heat transfer model was made to study an embedded microfluidic/TEG system (μF/TEG) system. An innovative embedded microfluidic/TEG system (μF/TEG) system is proposed which enables a device to be able to provide power to its cooling system eliminating external power input and resulting in energy efficient and more reliable heat removal system. The research identifies ...

A Novel Physics Interface for Nakamura Crystallization Kinetics

A. Levy [1],
[1] Laboratoire de Thermocinétique de Nantes, Nantes, France

Crystallization phenomena are of first interest in several industrial applications (polymer forming processes, metallurgy, phase change flow, energy storage...). A classical way to model the crystallization evolution is using the Nakamura kinetics law. In this paper, a novel physics interface is developed using the Physics Builder of COMSOL Multiphysics® , which accounts for the resolution of ...

Electromagnetic Actuators Modeling, Simulation and Optimization: Review of Methods and Their Application for Switching Devices - new

O. Craciun[1], V. Biagini[1], G. Stengel[1], C. Reuber[2], C. Chao[3], B. Funieru[3] , A. Binder[3]
[1]ABB Corporate Research, Ladenburg, Germany
[2]ABB AG Calor Emag Mittelspannungsprodukte
[3]TU Darmstadt, Department of Electrical Energy Conversion, Darmstadt, Germany

Electromagnetic actuators are representing one important component of ABB's medium voltage reclosers [1, 2]. Their performance is strongly influenced by the considered material properties as well as by the electronic control units that will power the actuator. Depending on the studied phenomena, different modeling, simulation and optimization methodologies are being used for medium voltage ...

Design and Optimization of Gas Sensor Testing Chamber using COMSOL Multiphysics®

K.Govardhan[1], K.Narmada[2], Nirmala Grace[3]
[1]VIT University, MEMS & Sensors Division, School of Electronics Engineering, Vellore, Tamil Nadu, India
[2]VIT University, Sensor System Technology, School of Electronics Engineering, Vellore, Tamil Nadu, India
[3]VIT University, Center for Nanotechnology Research, Vellore, Tamil Nadu, India

This study aims at the design and optimization of a Gas Sensing Chamber. The design takes advantage of the multiphysics simulation capabilities of COMSOL Multiphysics® to incorporate various physics such as CFD, Micro fluidics, Solid Mechanics, Electro thermal effects etc. The optimization needs to be done at multiple levels such as mixture of two gases, arriving laminar flow over the substrate, ...