See How Multiphysics Simulation Is Used in Research and Development

Здесь представлены презентации, которые демонстрировались на конференциях COMSOL по всему миру. В презентациях рассказывается о передовых исследованиях и инновационных продуктах, созданных с помощью COMSOL Multiphysics. Исследования относятся к различным отраслям и областям применения, включая электрические, механические, гидродинамические и химические дисциплины. Чтобы найти презентации из нужной области, воспользуйтесь функцией быстрого поиска.
View the COMSOL Conference 2018 Collection
MEMS and Nanotechnologyx

Evaluation of Efficiency Factors of Commercial Thermoelectric Materials Using COMSOL Multiphysics® Software

K. Cadien [1], S. Seif [1], T. Thundat [1],
[1] Department of Chemical & Materials Engineering, University of Alberta, Edmonton, AB, Canada

We have developed single leg model using COMSOL Multiphysics® software to compute Φ of TE materials without using conventional ZT parameters. The Φ were calculated using parametric programming in PDE by using special probe to capture change in power (∆P), ΔT, and area (A), thus (Φ = ∆P/A ... Читать дальше

Design and Analysis of Micro-tweezers with Alumina as Gripper Using COMSOL Multiphysics

V. S. Selvakumar, M. S. Gowtham, M. Saravanan, S. Suganthi, and L. Sujatha
Rajalakshmi Engineering College
Chennai, India

Micro-tweezers have been widely investigated because of their extensive applications in micro-fluidics technology, microsurgery and tissue-engineering. It has been reported that thermal actuation provides greater forces and easier control when compared to electrostatic micro ... Читать дальше

Void Shape Evolution of Silicon Simulation in COMSOL Multiphysics®

C. Grau Turuelo[1], B. Bergmann[1], C. Breitkopf[1]
[1]Technische Universität Dresden, Dresden, Germany

The void shape evolution of a trench patterned silicon substrate results in diverse cavities by varying initial conditions. The size and the arrangement of the initial trenches are decisive for the transformation process besides the annealing conditions which are, in fact, time and ... Читать дальше

COMSOL Multiphysics Applied to MEMS Simulation and Design

Dr. Piotr Kropelnicki[1]
Mu Xiao Jing[1]
Wan Chia Ang[1]
Cai Hong[1]
Andrew B. Randles[1]

[1]Institute of Microelectronics, Agency for Science, Technology and Research, Singapore, Singapore

In this research, we performed multiple COMSOL Multiphysics® simulations. We analyzed the dispersion curves of waves in a LAMB wave pressure sensor; simulated a thin metal film in a microbolometer and observed the resulting stress; investigated the thermal behavior of an acoustic wave ... Читать дальше

FEM Analysis of MEMS Capacitive Presure Sensor with Segmented Boss Structure for Diaphragm

A. K. Ramesh [1], P. Ramesh [1],
[1]College of Engineering Munnar, Munnar, Kerala, India

Microelectromechanical system (MEMS) based capacitive pressure sensor designs with improved sensitivity is always a matter of great concern and the recent developments in such a design is the MEMS capacitive pressure sensor with bossed diaphragm.The bossed diaphragm model improves ... Читать дальше

COMSOL API Based Toolbox for the Mixed-Level Modeling of Squeeze-Film Damping in MEMS: Simulation and Experimental Validation

M. Niessner[1], G. Schrag[1], J. Iannacci[2], and G. Wachutka[1]
[1]Institute for Physics of Electrotechnology, Munich University of Technology, Munich, Germany
[2]MEMS Research Unit, Fondazione Bruno Kessler, Povo di Trento, Italy

We present an easy-to-use toolbox for the automated generation of reduced-order mixed-level models for the evaluation of squeeze-film damping in microelectromechanical systems. The toolbox is programmed in JAVA and heavily exploits the functionality provided by the COMSOL API. The ... Читать дальше

Modeling and Simulation of MEMS Based 3D Vibrating Gyroscope for Mobile Robotics Applications

M. Ramya, R. P. S. Valli, R. Vidya, G. Anju, and M. Alagappan
PSG College of Technology
Tamil Nadu, India

In this study, a biomimetic vibrating 3D MEMS Gyroscope is designed, consisting of two circular diaphragms with a club shaped structure placed over one of them. This MEMS based vibrating gyroscope was modeled and simulated using COMSOL Multiphysics 4.1 - MEMS module. The purpose of ... Читать дальше

DNA Interactions in Crowded Nanopores new

K. Misiunas[1], N. Laohakunakorn[1], S. Ghosal[2], O. Otto[1], U. F. Keyser[1]
[1]University of Cambridge, Cambridge, UK
[2]Northwestern University, Evanston, IL, USA

The motion of DNA in crowded environments is a common theme in physics and biology. Examples include gel electrophoresis and the self-interaction of DNA within cells and viral capsids. Here we study the interaction of multiple DNA molecules within a nanopore by tethering the DNA to a ... Читать дальше

Design of High Performance Micromixer for Lab-On-Chip (LOC) Applications

K. Karthikeyan[1] , L. Sujatha[1]
[1]Rajalakshmi Engineering College, Chennai, Tamil Nadu, India

This paper presents the design and simulation of micromixer for Lab-On-Chip (LOC) applications. There are two types of micromixers: one is an active micromixer and another one is a passive micromixer. This paper investigates microfluidic flow characterization and mixing rate of two ... Читать дальше

Optimization of Device Geometry of a Fully-Implantable Hearing Aid Microphone

A. Dwivedi [1], G. Khanna [1],
[1] National Institute of Technology Hamirpur, Himachal Pradesh, India

The hearing impairment is affecting more than 360 million people all over the world.In India alone, 63 million people suffer from the significant auditory loss. Conventional hearing aids suffer from reliability, practicality and social stigma concerns. The totally implantable devices ... Читать дальше