

DESIGN AND SIMULATION OF 3D ZnO NANOWIRE BASED GAS SENSOR FOR CONDUCTIVITY STUDIES

Gouthami.N, Parthiban.D, Alagappan. M, Anju Gupta

PSG College of Technology, Coimbatore-641004

Gas Sensors

Sensors: Any device that senses a physical signal.

Gas sensor is a subclass of chemical sensors.

Gas sensor-concentration of gas.

Types of Gas Sensors

- Metal Oxide Based Gas Sensors
- Capacitance Based Gas Sensors
- Acoustic Wave Based Gas Sensors
- Calorimetric Gas Sensors
- Optical gas sensors
- Electrochemical gas sensors

Objective

- 3D gas sensor-hydrogen detection-conductivitynanolevel
- > Sensitivity increases-high surface to volume ratio
- Thickness-intermediate layer-total displacement and voltage
- Conductivity –increases and decreases.

SAW Sensor

- ➤ Two-port delay-line SAW sensor
- IDT –transmitter and receiver
- Viscoelastic properties –frequency shift and insertion loss

> Nanostructures – Active Area

Need For Nanostructure Implementation

- Acoustic energy Minimum and Maximum
- ➢ Waveguide Dielectric Material.
- Frequency and Wavelength

$$\lambda = 2(W_{el} + W_{sp})$$

where

 W_{el} - width of each individual electrode W_{sp} - spacing between two adjacent individual electrodes

Advantages

➢ Sensitivity

> Operates in high frequency (MHz to GHz)

Elastic solid

Surface morphology

Analytical Methods

> Types

- Delta function model,
- Equivalent network model,
- Green's function model and
- Coupling-of-mode method
- Second-order effects
 - Backscattering,
 - Diffraction
 - Mechanical loading
- ➢ Finite Element Analysis

Material Selection

Piezoelectric Substrate

- ≻ Electromechanical coefficient (K²)
- $> K^2 = 2(V_f V_m)/V_f$ where
 - V_f free surface phase velocity V_m - metallised surface phase velocity

Polarization

➢ Orientation

Lithium Niobate(LiNbO₃)

IDTs Material

- ➢ Aluminium
- ➤ Easy to deposit
- > Adheres well with the common oxide substrate

Intermediate Layer Material

- Dielectric materials –ZnO
- Lower acoustic velocity (approximately 2531 m/s)
- > Properties that can influence the propagation
 - Electromechanical coupling coefficient, phase velocity, polarisation and permittivity

Sensing Layer Material

- Adsorption Occurred-ZnO
- High mobility of conduction electrons
- ➤ Good thermal stability
- Chemical stability
- Good Conductivity
- Changes Due to Adsorption

2D Gas Sensor Model

Existing Model

- ➢ Substrate −LiNbO3
- ➢ IDTs- Aluminum
- Intermediate layer-ZnO
- Sensing layer –ZnO nanowire
- Optimized thicknessµm

Multiphysics Modeling and Structural Simulation

Modeling Dimensions

- ➢ 3D ZnO Nanowire Hydrogen Detection
- Substrate Dimensions
 - 30µm in the *X*-axis
 - 10µm in the Y-axis and
 - 4µm in the Z-axis.
- Intermediate layer Dimensions
 - 30µm in the *X*-axis
 - 10µm in Y-axis and
 - 1µm in the Z-axis

Contd..

➢ IDTs Dimensions

- 1µm as the width
- 0.2µm as the height

Sensing Layer Dimensions

- ZnO nanowires 0.1µm as the radius
- 2.5µm as the height

Geometry

Fig: SAW Sensor with Nanowire as the Sensing Material

Structural Simulation

Analysis – Piezoelectric Studies

- Boundary 3 Fixed Constraint
- First and Third electrode Electrical Potential
- Second and Fourth electrode Zero Potential

rho_ZnO + rho_H2_ZnO = 5676 kg/m³ + 1.647871 x 10^{-6} kg/m³

➢ Meshing – Free tetrahedral

Mesh Model

Fig: Completed Mesh Model

Results and Discussion

- Focussed total displacement and voltage contour.
- Different Thickness of Intermediate layer
 - o.4µm, o.6µm, o.8µm, 1.0µm, 1.2µm, 1.6µm, 1.8µm
 and 2.0µm

Simulation Result

Fig: Simulation result of $o.6\mu m$ Thickness of ZnO layer

Tabulation

Intermediate Layer Thickness(µm)	Total Displacement(10 ⁻⁵ m)	Electric Potential(V)
0.4	5.9625*10 ⁻⁵	5.565
0.6	6.0873*10 ⁻⁵	5.2777
0.8	5.8539*10 ⁻⁵	5
1.0	4.8625*10 ⁻⁵	5
1.2	4.5234*10 ⁻⁵	5
1.4	4.0416*10 ⁻⁵	5
1.6	3.8492*10 ⁻⁵	5
1.8	3.7092*10 ⁻⁵	5
2.0	3.9007*10 ⁻⁵	5

Total Displacement and Electric Potential for different Thickness of Intermediate Layer $_{\rm 24}$

Plot of Different Thickness of ZnO layer vs Total Displacement Obtained

Simulation Result of Voltage Contour via different thickness

Applications

- Coolant in generators
- ➢ Fuel of future
- Aerospace industry
- > Batteries and Fuel cells
- Chemical industries

Conclusion

- ➢ Modeled 3D Gas Sensor
- ➢ Optimised Thickness 0.6µm
- Enhanced Performance

References

1. Nurul Izzati Binti Mohamad Isa, Modelling of Intermediate Layer for Love Mode SAW device, 1-76, Universiti Teknologi Malaysia, 2011.

2. Guigen Zhang, Nanostructure-Enhanced SAW Biosensor and Its Computational Modeling, Hindawi Publishing Corporation , Journal of Sensors , 1-11, Volume 2009.

3. Massood Z. Atashbar, Bradley J. Bazuin, M. Simpeh, S. Krishnamurthy, 3D FE simulation of H2 SAW gas sensor, Sensors and Actuators B 111–112 (2005) 213–218

4. Yeswanth Rao and Guigen Zhang, 3D Modeling of a Surface-Acoustic-Wave Based Sensor, Excerpt from the Proceedings of the COMSOL Conference 2007, Boston

Acknowledgement

- P.S.G College of Technology
- **Dr. A. Kandaswamy**, HOD, Department of Biomedical Engineering
- Mrs. Nithya, Lab Assistant, Department of Biomedical Engineering