
Planar Geometry Ferrofluid Flows in Spatially Uniform Sinusoidally 

Time-varying Magnetic Fields 
 

Shahriar Khushrushahi
*1

, Alexander Weddemann
1
, Young Sun Kim

1
 and Markus Zahn

1
 

1
Massachusetts Institute of Technology,  

*Corresponding author:  77 Massachusetts Avenue 10-174, Cambridge, MA 02139, shahriar@alum.mit.edu 

 

 

Abstract: Past work [1-5] has analyzed 

ferrofluid flows subjected to magnetic fields in 

spherical and cylindrical geometries, using 

COMSOL Multiphysics. However, ferrofluid 

flows in the planar case, having analytical 

solutions, is usually the stepping stone to 

understanding flows in more complicated 

geometries. The reason is that under a uniform 

magnetic field, the ferrofluid's magnetization 

depends only on the particle spin velocity and 

not the fluid velocity. In addition, the uniform 

magnetic field results in zero magnetization 

force densities along the duct axis. 

 The case of planar Poiseuille ferrofluid flows 

in planar ducts, stressed by uniform sinusoidally 

applied magnetic fields transverse and parallel to 

the duct axis, has been previously analyzed [6-

10] using Mathematica as the software of choice. 

This work describes how to solve the previously 

solved planar geometry cases using COMSOL 

Multiphysics. The results obtained replicate 

those obtained using Mathematica. 
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1. Introduction 
 

Ferrofluids are stable colloidal suspensions of 

single-domain surfactant coated ferro- or 

ferrimagnetic nanoparticles in a carrier fluid. 

Ferrofluids exhibit superparamagnetism and 

have a typical magnetic volume fraction of 10%. 

 The nanoparticles have typical diameters of 

order 10 nm with a 1-2 nm surfactant coated 

layer. This small size prevents them from 

agglomerating under gravity and allows for easy 

dispersion due to Brownian motion. The 

surfactant layer prevents the nanoparticles from 

agglomerating under van der Waals and 

magnetic attraction forces.  

 The application of AC magnetic fields to 

ferrofluids tends to orient the magnetic moments 

of the constituting magnetic particles in the 

direction of the applied field with resistance to 

free rotation of the particles from fluid viscosity 

or magnetic crystalline anisotropy [4]. This 

causes the ferrofluid magnetization M to lag 

behind the applied magnetic field H resulting in 

a body torque density acting on the ferrofluid. 

Ferrohydrodynamic equations account for this 

antisymmetric stress when M and H are not 

collinear while satisfying linear and angular 

momentum conservation for the ferrofluid [6, 

11].  

 

2. Planar Geometry Setup 

 
 Figure 1 illustrates the planar duct containing 

the ferrofluid. To impose the horizontal 

tangential field Hz, ±y directed surface currents 

on the x=0 and x=d planes are required. The 

uniform AC magnetic flux density Bx is imposed 

by an external permanent magnet or 

electromagnet as shown in Figure 2.  

 Poiseuille flow is generated by applying a 

pressure difference in the z direction and hence 

the flow velocity can only be in that direction. 

The spin velocity ω is assumed to be in the y 

direction. Since the planar duct does not vary in 

the y or z directions, both v and ω can only vary 

with the x coordinate.  
 � � v��x�	
, � � ω��x�	� (1) 

 
 

Figure 1. Planar ferrofluid layer between rigid walls. 

Planar Poiseuille flow is generated by applying a 

pressure difference between the inlet and outlet. It is 

magnetically stressed by a uniform x directed AC 

magnetic flux density Bx, or by a uniform z directed 

tangential AC magnetic field Hz [4, 6, 7].  
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3. Governing Equations
 

3.1 Ferrohydrodynamics

 
 The conservation of linear and angular 

momentum equations 

Eq. 3. 
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Figure 2. An imposed voltage source will impose a 

flux  in the magnetic circuit, that will result in a flux 

density B that is spatially uniform in the ferrofluid
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Since the ferrofluid is in a current free region 

Ampere's law results in Hz being constant in the 

ferrofluid volume.  
 � " ( � 0 B CK_CF � 0 B K_ � TUVW�XV� (13) 

 

The magnetization vectors (3;E and 3;_) can be 

solved  by substituting the constant Hz and Bx 

fields into the magnetic relaxation equation of 

Eq. 8 [4, 6-10] resulting in  
 

`a3;E � bc3;_ �3;Eτ � χ&τ K;E 
(14) 

 

`a3;_ � bc3;E �3;_τ � χ&τ K;_ 
(15) 

Using the following relation 
 

DeE � \&�K;E �3;E� B K;E � DeE\& �3;E  (16) 

 

Eqns 14 and 15 result in the following 

expressions for (3;E and 3;_) 
 

3;E � χ&fK;_gbchi � �`ah � 1�DeE \&⁄ klgbchi. � �`ah � 1��`ah � 1 � χ&�m 
(17) 

 

 

3;_ � χ&fK;_�`ah � 1 � χ&� � DeEbch \&⁄ klgbchi. � �`ah � 1��`ah � 1 � χ&�m 
(18) 

It can be seen from Eqns 17 and 18 that 3;E 

and 3;_ are only a function of spin velocity ωy 

which is itself a function of the x coordinate. As 

a result, Hx and Bz are not spatially uniform due 

to the magnetization that depends on the x 

coordinate. Therefore, the total magnetic flux 

density B and magnetic field H inside the 

ferrofluid duct are of the form 
 A � /0:fn;Eop�n;_�F�oqk0<=>?@  ( � /0:fr; E�F�op�r; _oqk0<=>?@ (19) 

 

3.4 Magnetic Force and Torque Densities 

 

 Steady state flow is assumed as the fluid 

responds to the time average (< >) component of 

both the force and torque density terms in Eq. 4 

and Eq. 5. These are given as 
 s�t � µ&2 Refg'; · �i(; wk 

(20) 

 s�t � µ&2 Ref'; " (; wk 
(21) 

 

where * represents the complex conjugate. The 

time average components of the magnetic force 

density can then be determined to be 
 sFyt � � ddx {µ&4 }3;E}.~ , sF�t � 0 

(22) 

 and similarly the torque density  

 sT�t � 12Ref3;_DeEw � µ&3;Ewg3;_ � K;_ik 

(23) 

Simplifying Eqns 6 & 7 and substituting the 

torque and force densities of Eqns 22 & 23 gives 
 0 � ���-�� � 2! CbcCF � �! � *� d.�_dx.  

(24) 

 

 

0 � sT�t � 2! Jd�_dx � 2bcL � *- d.bcdx.  
(25) 

where p' is a modified pressure that includes 

pressure, <Fx> and gravitational effects 
 �� � � � µ&4 }3;E}. � ρgx 

(26) 

 

3.5 Normalized general equations 

 

 The parameters are expressed in 

dimensionless form indicated by tildes, given in 

Eq. 27 with time normalized to the magnetic 

relaxation time τ, space normalized to the duct 

spacing d, and magnetic field quantities 

normalized to a nominal magnetic field strength 

H0.   

a� � ah,r� � r;K& , �� � �;K& , n� � n;\&K& , F� � FC 

�_� � �_hC , b�c � bch, �̂c � ĉ\&K&. , *� � 2*\&K&.h 

*�� � *-\&K&.hC. , !� � 2!\&K&.h , ���-�� � C\&K&.
��-��  

 

 

 

(27) 

 

The coupled dimensionless flow and spin 

velocity equations are then given as  
 0 � ����-��̃ � !� Cb�cCF� � 12 g!� � *�i d.��_dx�.  

(28) 

 

 

0 � sT��t � !� Jd�_�dx� � 2b�cL � *�- d.b�cdx�.  
(29) 

where 
 sT��t � 12Ref3�_D�Ew �3�Ewg3�_ � K�_ik 

(30) 

and magnetization derived in Eqns 17 & 18 

given by 
 

3�E � χ&fK�_b�c � �`a� � 1�D�Ekfb�c. � �`a� � 1��`a� � 1 � χ&�k 
(31) 

 

 

3�_ � χ&f�`a� � 1 � χ&�K�_ � b�cD�Ekfb�c. � �`a� � 1��`a� � 1 � χ&�k 
(32) 

 

Substituting Eqns 31 & 32 into Eq. 30 gives the 

exact torque density expression as 



sT��t
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(33) 

 

Zahn [6] simplifies this expression by linearizing 

the torque in the limit of small b�c and is given 

by the form 
  limb� ��1sT��t � �̂& � �b�c  (34) 

where 
  

sT�&t � �χ&Re lfχ&a�. � `a�ga�. � 1 � χ&ikfK�_D�Ewkmga�. � 1 � χ&i. � a�.χ&.  

 

(35) 

 

sαt � χ&2
�}D�E}.ga�. � 1i � }K�_}.fa�. � �1 � χ&�.k�

ga�. � 1 � χ&i. � a�.χ&.  

 

(36) 

 

3.6 Boundary Conditions 

 

For Eq. 28 the no slip velocity boundary 

condition was implemented. For Eq. 29, the 

boundary condition on spin velocity b�c was set 

to 0 if *��≠0, otherwise if *��=0 no boundary 

condition was implemented on spin velocity b�c. 

These boundary conditions for *��≠0 are 
 �_� �F� � 0� � 0 �_� �F� � 1� � 0 b�c�F� � 0� � 0 (only if *��≠0) b�c�F� � 1� � 0(only if *��≠0) 
 

 

 

(37) 

 

4. Modeling  

 
4.1 Model Parameters 

 
The results of Zahn and Greer [6] were first 

replicated with parameters taken from their paper 

such as χ0=1, a�=1, !�=*�=1,
Y[��Y_  =0.00001. Pioch, 

in her analytical results [8-10], obtained kinks in 

her distribution of flow and spin velocities with 

certain parameters. These parameters were used 

to verify her results using COMSOL 

Multiphysics 3.5a. 

 

 

 

 

 

4.2 Using COMSOL Multiphysics 3.5a  

 

 The 2D steady state Incompressible Navier 

Stokes module was used to represent the 

conservation of linear momentum equation in 

Eq. 28. The subdomain and boundary settings 

used in COMSOL are listed in Table 1 and Table 

2 respectively. 

 

COMSOL quantities Eq. 28 

ρ 0 

η 12 g!� � *�i 
Fx !� Cb�cCF�  

Fy 0 
 

Table 1. Coefficients for subdomain settings of the 2D 

Navier Stokes module in COMSOL 3.5a representing 

the linear momentum conservation equation of Eq. 28. 

 

Boundary Conditions COMSOL quantities 

Inlet Left wall  Pressure, No viscous Stress 

p0 = -��- such that  
¡[��¡_� ¢ 0 is 

obtained  

Outlet Right wall Normal Stress 

f0=0  

Other Duct Walls No slip  �_� � 0 
 

Table 2. Coefficients for boundary settings of the 2D 

Navier Stokes module in COMSOL 3.5a representing 

the linear momentum conservation equation of Eq. 28. 

  

 A General PDE module was used to 

represent the conservation of angular momentum 

equation in Eq. 29. The subdomain settings used 

are listed in Table 3. The boundary settings used 

are listed in Table 4 for either case, *��=0 or  *��≠0. 

 

COMSOL quantities Eq. 29 

Г 0,0 

F sT��t � !� Jd�_�dx� � 2b�cL
� *�- d.b�cdx�.  

ea 0 

da 0 
 

Table 3. Coefficients for subdomain settings of the 2D 

General PDE module in COMSOL 3.5a representing 

the angular momentum conservation equation of Eq. 

29. 

 

 

 



Boundary Conditions

All walls (if 

All walls (if 

Table 

General PDE module in COMSOL 3.5a representing 

the linear momentum conservation equation of 

 The ferrofluid magnetization in 

implemented using the 2D 

Currents, Vector Potential

settings listed in

condition was applied which poses a subtlety. The 

magnetic field in the vertical direction, 

the constant magnetic flux 

using the relationship in 

(note the normalization)

   

COMSOL 

quantities

Magnetization 

 

Table 

Perpendicular  Induction Currents, Vector Potential 

module in COMSOL 3.5a representing the 

magnetization vectors of 

 

Boundary Conditions

 

Table 

Perpendicular  Induction Currents, Vector Potential 

module in COMSOL 3.5a representing the 

magnetization vectors of 

 

 All modules use stationary analysis except 

for the 

Vector Potential

transient

conditions are slowly ramped up in time, using 

COMSOL's ramp (

convergence.

 

4.3 Using Mathematica 

  

The boundary value problem described by 

28-32 

method

obtained using the complete torque equation in 

Boundary Conditions

All walls (if *��≠0)

All walls (if *��=0)

4. Coefficients for boundary settings of the 2D 

General PDE module in COMSOL 3.5a representing 

the linear momentum conservation equation of 

The ferrofluid magnetization in 

implemented using the 2D 

Currents, Vector Potential

settings listed in Table 

condition was applied which poses a subtlety. The 

magnetic field in the vertical direction, 

the constant magnetic flux 

using the relationship in 

(note the normalization)

COMSOL 

quantities 

 

Magnetization M 

5. Coefficients for subdomain settings of the 2D 

Perpendicular  Induction Currents, Vector Potential 

module in COMSOL 3.5a representing the 

magnetization vectors of 

Boundary Conditions

All Walls  

6. Coefficients for subdomain settings of the 2D 

Perpendicular  Induction Currents, Vector Potential 

module in COMSOL 3.5a representing the 

magnetization vectors of 

All modules use stationary analysis except 

for the 2D Perpendicular Induction Currents, 

Vector Potential module. This module was made 

transient so that the magnetic field boundary 

conditions are slowly ramped up in time, using 

COMSOL's ramp (

convergence. 

4.3 Using Mathematica 

The boundary value problem described by 

 and Eq. 37 was solved using the 

method in Mathematica 8.0. 

obtained using the complete torque equation in 

Boundary Conditions COMSOL quantities

0) Dirichlet boundary condition

R= 

0) Neumann boundary

condition

Coefficients for boundary settings of the 2D 

General PDE module in COMSOL 3.5a representing 

the linear momentum conservation equation of 

The ferrofluid magnetization in Eqns 31 & 32

implemented using the 2D Perpendicular Induction 

Currents, Vector Potential module with subdomain 

Table 5. A magnetic field bou

condition was applied which poses a subtlety. The 

magnetic field in the vertical direction, 

the constant magnetic flux D�E, has to be implemented 

using the relationship in Eq. 16 as described in 

(note the normalization).    

Eq. 31 & 32

χ&fK�_b�c �fb�c. � g`a� �χ&f�`a� � 1 �fb�c. � �`a� �
. Coefficients for subdomain settings of the 2D 

Perpendicular  Induction Currents, Vector Potential 

module in COMSOL 3.5a representing the 

magnetization vectors of Eq. 31 & 32. 

Boundary Conditions COMSOL quantities

Magnetic Field

H0 = K�_ 

Coefficients for subdomain settings of the 2D 

Perpendicular  Induction Currents, Vector Potential 

module in COMSOL 3.5a representing the 

magnetization vectors of Eq. 31 & 32. 

All modules use stationary analysis except 

2D Perpendicular Induction Currents, 

module. This module was made 

so that the magnetic field boundary 

conditions are slowly ramped up in time, using 

COMSOL's ramp (flc2hs) function, to aid 

4.3 Using Mathematica  

The boundary value problem described by 

was solved using the 

in Mathematica 8.0. Solutions were 

obtained using the complete torque equation in 

COMSOL quantities 
Dirichlet boundary condition

R= -b�c , G=0 
Neumann boundary 

condition 

G=0  
Coefficients for boundary settings of the 2D 

General PDE module in COMSOL 3.5a representing 

the linear momentum conservation equation of Eq. 29.

Eqns 31 & 32 was 

Perpendicular Induction 

module with subdomain 

A magnetic field boundary 

condition was applied which poses a subtlety. The 

magnetic field in the vertical direction, K�E(x), and not 

, has to be implemented 

as described in Table 6

31 & 32 

� g`a� � 1iD�Ek1ig`a� � 1 � χ&ik� χ&�K�_ � b�cD�Ek1��`a� � 1 � χ&�k
. Coefficients for subdomain settings of the 2D 

Perpendicular  Induction Currents, Vector Potential 

module in COMSOL 3.5a representing the 

 

COMSOL quantities 

Magnetic Field � , K�E � D�E �3�E 
Coefficients for subdomain settings of the 2D 

Perpendicular  Induction Currents, Vector Potential 

module in COMSOL 3.5a representing the 

 

All modules use stationary analysis except 

2D Perpendicular Induction Currents, 

module. This module was made 

so that the magnetic field boundary 

conditions are slowly ramped up in time, using 

function, to aid 

The boundary value problem described by Eqns 

was solved using the shooting 

Solutions were 

obtained using the complete torque equation in 

 
Dirichlet boundary condition 

. 

was 

Perpendicular Induction 

module with subdomain 

ndary 

condition was applied which poses a subtlety. The 

and not 

, has to be implemented 

6 

ik, k k 
. Coefficients for subdomain settings of the 2D 

Perpendicular  Induction Currents, Vector Potential 

module in COMSOL 3.5a representing the 

 

 

Coefficients for subdomain settings of the 2D 

Perpendicular  Induction Currents, Vector Potential 

module in COMSOL 3.5a representing the 

All modules use stationary analysis except 

2D Perpendicular Induction Currents, 

module. This module was made 

so that the magnetic field boundary 
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6. Conclusions 

 
 Ferrohydrodynamic flows are difficult to 

analyze due to the coupling of five vector 

equations. These constitute of the linear and 

angular momentum conservation equations along 

with Ampere's law with no free current (� " ( �0), Gauss's law for magnetic flux density 

(� · A � 0) and the ferrofluid magnetic relaxation 

equation.  

 Ferrofluid pumping in a planar geometry, 

subjected to tangential and perpendicular 

magnetic fields, is a well posed problem with 

analytical solutions. This work highlights the use 

of a multiphysics finite element package such as 

COMSOL Multiphysics in replicating previously 

obtained Mathematica results with very good 

agreement between the two.  
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