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Abstract: In this study, magneto-rheological 
elastomer (MRE) composite beams made of 
Barium hexaferrite (BaM) and Iron (Fe) powders 
combined with a highly-compliant matrix 
material were simulated using COMSOL's Solid 
Mechanics and AC/DC modules. The goal of the 
work was to develop models capable of 
predicting the actuation behavior of hard- and 
soft-magnetic MREs. 
 
The BaM provided the hard magnetic behavior 
while Fe, served as the soft magnetic case. Both 
composites were cured in the presence of a 
magnetic field. The dimensions of the beams 
were Length: 75 mm; Width: 5 mm; and 
Thickness 2 mm. The beams were fixed at the 
base; all other surfaces were free. The MRE 
beam was contained within a simulated air 
volume modeled as an elastic medium with 
negligible modulus. The simulation applied a 
surface current Jz between the left and right 
surfaces of the entire domain. This gave rise to a 
magnetic field perpendicular to the poling 
direction (-x direction in the BaM case) which 
actuated the cantilevers. 
 
The primary problem COMSOL addresses is the 
2-way coupling between elastic deformation and 
the magnetic field interactions. The authors use 
actual magnetization and elastic modulus data 
form experiments to determine the model's 
material parameters. As prescribed 
displacements are imposed on the beam, the 
resulting restoring force RxN (the force that tends 
to return the sample to its undeformed state) is 
determined from reactions at the proscribed 
displacement boundary. The work shows good 
agreement to data in the literature for BaM 
MREs. 
 
Keywords: finite element analysis (FEA), 
magnetorheological elastomers (MRE’s), smart 
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1. Introduction 
 
In the last few years, prompted largely by the 
work of Lord Corporation research group (e.g. 
Jolly et al. [1996]) numerous articles on the 
magneto-elastic behavior of MRE’s have 
appeared. There are two different 
phenomenological approaches to the study of 
MRE’s magneto- elasticity: firstly, theories that 
treat the problem from the viewpoint of 
continuum mechanics and, secondly, statistical 
or kinetic theories that attempt to derive 
magneto-elastic properties from idealized models 
of the structure of particulate composites. There 
are several works in the literature that presents 
the full system of equations suitable for 
deformable MRE’s in an electro-magnetic field; 
notably Borcea and Bruno [2003] calculated the 
overall deformation and stress–strain relation 
using fully coupled magneto-elastic interactions. 
Dorfmann and Ogden [2003] summarized the 
equations governing MRE deformation with 
particular reference to elastomers whose 
mechanical properties can change rapidly by the 
application of a magnetic field. Kankanala and 
Triantafyllidis [2004] illustrated the magneto-
elastic coupling phenomena in a cylinder 
subjected to traction or torsion under the 
presence of external magnetic fields. Besides 
these models, Yin et al. [2002] and Coquelle et 
al. [2006] have also proposed micro-
mechanically based particulate composite 
concepts.    
 
Although the aforementioned models provide 
important guidelines to simulate such behavior, 
most of their solutions are idealized in the sense 
that they apply only to bodies of infinite extent 
and are derived for isotropic magneto-elastic 
materials. Recently, Tuan and Marvalova [2010] 
and Castañeda and Galipeau [2010] presented 
constitutive equations that govern the interaction 
between an anisotropic MRE and a magnetic 
field.  Castañeda and Galipeau study the role of 



shape anisotropy while Tuan and Marvlova study 
an incompressible magneto-elastic anisotropic 
material capable of large deformations. These 
types of models are important because magnetic 
anisotropy drives actuation.  
 
In this, and other works, modeling begins by 
choosing a magnetic vector potential, , as the 
independent magnetic variable in the constitutive 
laws .The independent variable, , is then related  
to higher order dependent variables such as 
magnetic flux density, , for example. 
Relationships between the vector displacement 
field, the independent variable in elasticity 
theory, and higher order dependent variable such 
as strain and stress are employed as well (see 
later sections for details). The resulting 
boundary-value problem can be presented as a 
set of differential equations coupling elastic and 
magnetic behavior that can be solved using a 
finite-element method. To reflect material 
behavior under combined external mechanical 
loads and magnetic fields and to come up with a 
reasonable and applicable magneto-elastic law is 
still an important issue in linear and nonlinear 
magneto-elasticity theory. Moreover, it is 
important to validate modeling approaches by 
direct comparison to accurate experimental data. 
 
For this reason, a number of actuation 
experiments on MRE’s driven by a magnetic 
field exist. Zhou and Jiang [2004] presented the 
real-time dynamic deformation progress (the 
vector diagram of the displacement) of MREs 
and elastomer–ferromagnet composite (EFCs) 
under the presence of a magnetic field. Von 
Lockette et al [2011] have shown that combined 
elastic plus magnetic restoring forces in BaM-
MRE cantilevers, which are non-zero for non-
zero field strengths, increase with tip deflection 
and field strength. In the same way restoring 
forces in Fe-MRE beams, which are zero at zero 
deflection (regardless of field strength), increase 
with tip deflection and field strength. In addition, 
experimental work has shown that the magnetic 
component of the restoring force in BaM 
cantilevers is relatively independent of 
displacement. 
 
In this study, we present the simulation of a 
cantilever beam of finite size subjected to a 
magnetic field. The constitutive equations are 
based on generalized forms of Hooke’s laws and 

Maxwell’s equations for anisotropic materials 
that depend on the displacement field  and the 
magnetic potential vector  as the independent 
variables. The fundamental problem herein deals 
with discontinuous changes in physical 
properties (elastic and magnetic) across 
innumerable particle-matrix interfaces.  These 
physical properties give rise to magnetic and 
elastic responses at particle and inter-particle 
levels that in turn generate forces within an MRE 
in response to an applied magnetic field or 
external load.   
 
In order to formulate tractable problems, 
previous theoretical modeling has been forced to 
address the issue using simplifying assumptions 
of material composition and structure, for 
example roughly spherical soft-magnetic 
particles either randomly arranged or neatly 
aligned. This work begins down a computational 
path, employing simplifying assumptions on 
behavior that are based on experimentally proven 
material response which include both isotropy 
and anisotropy in varying cases.  This is an 
important step since key paradigms of such 
assumptions, such as the alignment of particles 
in MREs cured in a magnetic field, are coming 
under increased scrutiny in MREs with 
technologically relevant volume fractions and 
thus are invalidating the basis of previous 
constitutive models (e.g. Boczkowska [2009]). A 
finite element modeling approach allows us to 
analyze the elasto-magnetic behavior (both 
kinetic and kinematic) numerically while 
incorporating experimentally determined elastic 
and magnetic behavior. The computational 
method then seeks to solve the problem of 
determining the combined elasto-magnetic 
behavior of a given geometry under given 
external mechanical and magnetic loads. 
 
The basic objective of the simulation described 
in this report was to develop a predictive model 
of MRE behavior for Hard- and Soft-magnetic 
MRE’s. The objective was accomplished by 
measuring the physical and rheological 
properties of actual MRE samples and 
developing continuum computational models for 
an MRE particulate composite.. The authors use 
actual magnetization and elastic modulus data 
from experiments to determine the model's 
material parameters.  
 



2. Model Definition 

 
The problem herein is considered in a 2-D plane 
as illustrated in Figure 1.The model consists of 
two regions: a cantilever beam ( ) and the 
surrounding air region ( ). The dimensions of 
the beams were Length: 75 mm; Width: 5 mm; 
and Thickness 2 mm. Basic mechanical and 
magnetic properties are established from 
experimental data and literature values: the 
Young’s modulus and 

a, Poisson’s ratio ,  density 
, and the magnetic saturation 

of BaM . For Fe the magnetic 
properties are defined by an H-B curve 
calculated form experiments. 
 
In the air region, the magnetic field depends on 
the vector potential  which is determined from 
the solution to the problem given appropriate 
boundary conditions on 1 and 9 (Fig. 1).  The 
direction of the resulting magnetic field in the air 
region is then parallel with the y-axis. The 
moving mesh is used for the calculation of the 
magnetic field values.  

 
 
Figure 1. Geometry of the studied 2-D problem. 
Omega represents the beam domain in grey) which is 
fixed at the base and Gamma the air domain (dashed 
line. Boundaries are numbered. 
 

The mesh movement inside the internal 
subdomain and at its boundaries is determined 
by the displacements of the deformed beam. The 
primary problem COMSOL addresses is the 2-
way coupling between the elastic deformation 
and the magnetic field interactions. 
 

Boundary 

Number 

Elastic Boundary 

Condition 

Magnetic 

Boundary 

Condition 

1 Free SC (-) 

2 Fixed PMC 

3 Free PMC 

4 BL FC 

5 Fixed FC 

6 PD, BL FC 

7 BL FC 

8 Fixed PMC 

9 Free SC (+) 
 
Table 1. Boundary conditions on the propose model 
where SC is the surface current, PMC the perfect 
magnetic conductor, FC the force calculation, BL the 
boundary load, and PD the prescribe displacement 
condition. 
 

 
Figure 2. Schematic of the finite element model 
showing the direction of: the applied current (the 
open circle is out and circle with x is into the board), 
prescribed displacement , and reaction force . 



As the tip of the beam undergoes blocked free 
deformation through the application of a 
magnetic field or prescribed displacement via 
applied boundary conditions, a reaction force 
that tends to bring the beam back to an 
equilibrium position is created. Hence, the 
accurate prediction and analysis of this reaction 
force is important in predicting the actuation 
capabilities of the MRE’s. Therefore, the 
analysis and computation of the x-direction 
reaction force on boundary 6 (Fig. 1) is of 
primary interest. 
 

3. Governing Equations 
 
Herein the magneto-elastic behavior of the 
MRE’s is analyzed using the continuum-
mechanics approach in which the appropriate 
mechanical deformation equations are coupled 
with electromagnetic equations. Let us consider a 
differential volume element in static equilibrium 
within the cantilever beam acted on by an 
arbitrary body force. A body force is any 
externally applied force that acts on each element 
of volume of the continuum, thus, a force per 
unit volume . Applying Newton's first law of 
motion, we can obtain the set of differential 
equations that govern the stress  distribution 
within the beam, given in tensor notation by
 

  1 
 
Next we employ generalized Hooke’s Law  
 

  2 
 
where  is stress tensor,  is the stiffness matrix 
defined in 2D plane strain. 
 
Given tensor notation for strain-displacement,  
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we substitute 2-3 into 1 yielding the governing 
equation in terms of the independent 
displacement variables, ,  
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This set of equations encompasses what 
COMSOL solves for the elastic aspect of the 
elasto-magnetic problem. On the other hand, 
Maxwell’s equations represent the governing 
equation of electro-magnetic phenomena. In this 
case, 

 
 

5 
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where  is the electric field intensity,   the 
magnetic flux density,  the magnetic field 
intensity,  the displacement current density, 
and  the electric current density.   
 
First, we formulate the vector potential  defined 
by   

  
7 
 

Next, assuming a quasistatic model, all time 
derivatives are zero, specifically  
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which, from eq. (5) yields  
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Together with the material law 
 

  10 
 
where  is the material electric conductivity,  , 
the applied current density, and  the material‘s 
permeability we can reduce our remaining 
Maxwell equation to 
 

  11 
 

The three materials in question, the air medium, 
the Fe-MRE, and the BaM-MRE, have three 
different  relationships. The general 
constitutive equation for the magnetic response 
of the air medium is given by 
 

  12 
 



yielding the governing equation for the air 
medium domain in terms of the independent 
variable,  

 

 
 

13 

 
where , is the relative permeability of the 
material (unity in this case) and 

is the permeability of free 
space. 
 
The general constitutive equation for BaM , a 
hard magnetic material, can be expressed by 
 

  14 
 
Therefore, the governing equation for a BaM-
MRE domain is given by 
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which in terms of the dependent variable yields 
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Magnetization values for the anisotropic BaM 
material will be found from experimental results.   
 
For Fe-MREs the gradual alignment of the 
magnetic domains within the material causes an 
increase in  as  is gradually increased.  The 
constitutive relation is not a simple linear 
function and thus requires a general definition, 
 

  17 
 
where the function  will be found from 
experimental results. Finally, substituting (17) 
into (11) we get 
 
  18 
 
3.1 Model Boundary Conditions 
 
The basic idea behind our proposed system is to 
allow the mechanical structure to bend freely (as 
expected for BaM composites) in the presence of 
a magnetic field or to impose a tip deflection and 
measure the required external load via the x-

component of the reaction forces. The 
dimensions of the beams were Length: 75 mm; 
Width: 5 mm; and Thickness 2 mm. The beam 
was contained within a simulated air volume 
modeled as an elastic medium with negligible 
modulus. The bending results in a nonlinear 
relationship between the beam tip deflection and 
the resulting restoring force on its surface. 
 
Prescribed displacements, u, are imposed on 
boundary 6; the resulting restoring force RFx is 
determined from reactions at the proscribed 
displacement boundary. A surface current  is 
applied between the left and right surfaces of the 
entire air domain (boundaries 1 and 9). This 
gives rise to a magnetic field aligned with +y, 
which is perpendicular to the poling direction 
(the BaM was poled in the -x direction), that 
actuates the cantilevers (see Figure 2). 
 
A parametric study was developed to determine 
the influence of the applied magnetic field on the 
deflection of the beam. Since the applied 
magnetic field plays a major role in determining 
the beam deflection, the study defines one 
parameter:  the applied surface current, , which 
gives rise to a magnetic field and is defined by a 
start value 0, an end value 1240, and the step of 
the range 310. Then for each prescribe 
displacement imposed on the tip of the beam, it 
is possible to calculate the resulting restoring 
force for a range of magnetic field values and 
displacements. 
 
3.1.1 Mechanical Boundary Conditions (MBC’s) 
 
The MBC’s are formulated as prescribed 
displacement , prescribed constraints 
where , and boundary load specify on 
domain . This boundary load is defined by the 
Maxwell surface stress tensor (included to 
account for the stress due to the electromagnetic 
force induced by the magnetic field) on the 
surface . The calculated Maxwell surface tensor 
is imposed as a surface traction on the boundary 
of the MRE (boundaries 4-7) and is the basis of 
the elasto-magnetic coupling. 
 
3.1.2 Electromagnetic Boundary Conditions 
(EBC’s) 
 
The EBC’s are formulated as prescribed surface 
current , magnetic insulation on boundary 5 



to impose symmetry for the magnetic field, and 
perfect magnetic conductor condition on the 
upper and lower surface of  (i.e. boundaries  
2, 3, and 8) so that the prescribed current is not 
allowed to flow out of the air domain. 
 
4. Mesh 
 
Free Quad elements were used to mesh the beam 
and Free Triangular elements to mesh 
the remaining domain. The quality of the 
triangular mesh was set by the triangulation 
method: Advancing front. The sizes of the 
elements were specified using the predefined 
sizes presented in table 2.  
 

Domain Element Size [mm] 

Beam Extra Fine 1.6 
Air Extremly Fine 0.8 

 
Table 2. Element type and size of the used mesh. 

 
 
Figure 3. Convergence study of the reaction force RFx 
vs. degrees of freedom (DOF) at specific magnetic 
field densities. 
 
Determination of an appropriate level of mesh 
refinement started with a coarse divided mesh, 
which was gradually reduced in size while the x-
reaction force was used as a metric of mesh 
convergence. Element size reduction was 
terminated when the results were found to 
asymptotically converge (see Figure 3). The 
resulting mesh consisted of 2620 elements and 
28340 degrees of freedom and is presented in 
Figure 4. 

 
Figure 4. (A) Resulting and (B) deformed mesh, the 
converged mesh consists of 2620 elements and 28340 
degrees of freedom. Tip Displacement is 4 mm. 
 
5. Results and Discussion 
 
In this study, a magneto-elastic finite element 
formulation is presented. Two problems have 
been considered using COMSOL as case studies. 
In one problem, we model an MRE beam either 
made of nominally 30% v/v 40-micrometer 
Barium hexaferrite (BaM) particles, which 
provides the hard magnetic behavior or 325 mesh 
Iron (Fe) also at 30% v/v, which serves as a soft 
magnetic case. Both are combined with a 
compliant elastomer matrix. Initially we model 
the static deformation of the MRE’s under 
combined elasto-magnetic behavior.  
 
For the case of the BaM MRE the deformation 
obtained from the simulation shows good 
qualitative agreement with experimental.  
 
Secondly, reaction forces to the  blocked bending 
deformation of the beam under the influence of 
static magnetic field are analyzed. The results 
obtained from the simulation are compared with 
those reported in the literature (see Figure 6) and 
show very good agreement.  
 
The BaM composite behavior, as reproduced by 
the simulation, is shown in Figure 6, the 
composite reaction force is non-zero for non-
zero field strengths and as expected, they 
increase with tip deflection and field strength.   

 



 
 
Figure 6. x-direction reaction force vs. tip 
displacement for BaM beam MRE composite. Data (in 
symbols) taken from Von Lockette et al. [2011] is 
compared to FEM model predictions (lines). 

 
This result is again in agreement with 
experimental observation [Von Lockette 2011]. 
Nevertheless, in experimental results a non-
linear behavior is noticeable as the field is 
increased and tip displacement gets larger. 
 
6. Conclusion 

 
Based on the comparison between the propose 
model and experimental data we conclude that 
the model can be useful to predict the behavior 
of hard-MRE’s specially those comprise of BaM 
particles. 
 
On the contrary, the Fe composite behavior, as 
reproduced by the simulation, is not in 
agreement with experimental data. The authors’ 
believe that the problem is inherent to the 
formulation of the Maxwell stress tensor. Once 
the model becomes asymmetric when it bends, it 
develops an erroneous net force with +x 
direction. . This error does not go away even at 
millions of DOF.  
 
A suggested fix is to use a combination of 
sensitivity analysis, deformed geometry, and 
AC/DC modules to get a better solution of the 
magnetic force tensor.  However, one cannot 
couple this with solid mechanics (e.g. assign this 
traction to the MRE surface). Consequently, the 
Fe-MRE model is not effective.  The support 
technicians at COMSOL are aware of this issue. 
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