

Presented at the 2011 COMSOL Conference

Multifunctional Fluid Power Components using Engineered Lattice Structures

Sam Newbauer, Doug Cook, Devin Pettis, Subha Kumpaty, Ph.D.

Milwaukee School of Engineering

Presenter: Sam Newbauer Date: October 14, 2011

Overview

- > Introduction
- Multifunctional Unit Cells
- Determining Effective Thermal Conductivities
- Developing Thermal-Management Structure
- > Experimental Results
- Next Steps
- Conclusions

Multifunctional Structure

- > Heat dissipation
- ➤ Load bearing
- > Reduced dead weight
- > Potential to reduce noise & vibration

State-of-the-art

Metal Foam

- Multifunctional capabilities
- Not optimized

Finned Heat Structure

- Not multifunctional
- Not optimized

Ex.: Powered Personal Devices

- Safety considerations of heat
 - Burn
 - Pain
 - "Toasting"
- Discomfort issues

Multi-Institutional Patent Pending

<u>CCEFP Project 2D & Test Bed 6 - Concept Models:</u> Belt-worn or Orthosis-integrated Power Source

Multifunctional Unit Cells

- Thermal conductivity as a function of strut diameter and cell size
- Varied strut diameters; 0.2L, 0.5L, and 0.8L
- Initial cell size 1 inch, later scaled to determine size effects
- Analyzed Cube, Ultra Cube, and Super Cube configurations

Modeling the Cubes

$$q^{\prime\prime} = \frac{\Delta T}{R_{equiv}}$$

$$K = \frac{x}{A(\frac{\Delta T}{q''} - 2R_{cop})}$$

- Stagnant air (no convection)
- Base material aluminum (k=160 W/mK)
- Solved for three orthogonal directions
- Boundary conditions
 - T1=400K
 - T2=300K
 - Other four sides insulated

Model Results

- Determined the bulk thermal conductivity of three lattice structures in the three orthogonal directions
- Heat flux scaled linearly to length of cell, resulting in a constant conductivity
- Analyzed structures with varying material, scaling equations based on thermal conductivity
- Investigated the effects of internal convection negligible
- Working to determine the energy balance via mass transfer through the structure

Optimizing K_{eff}

- Specified inner temperature
- Free external convection on outer surface
- ➤ Target: 45°C surface temp with "radial" heat flux

Developing the Structure

- Geometric relationships derived to maintain "squareness"
- Matlab® script calculates divisions and strut lengths
- Iterate to meet minimum feature size (secondary structure optimization)

Experimental Results

Experiment: Comparison of Thermal-Management Structures

0-05 -0.5 0

- > Same mass
- Same material
- ➤ Structure area = 2(fin area)

- ➤ Both cast
 - Cu/Al alloy
 - 43W/mK

Model Setup

Metal Foam Comparison

Comparison of Linearly Derived Equations of Foam FEA to Exp.

Finned Heat Sink Comparison

3D Single Fin Comparison of Measured Data and FEA Analysis

Engineered Structure Comparison

Comparison of FEA and Exp. Derived Equations for Engineered Structure

Next Steps

- Design & fabrication of multi-functional orthosis structure
- Continue multi-functional characterizations
- > Determine if second-order relations are best
- Continue development of the structure-sizing relations
- Continue development of automated free-form algorithms

Conclusions

- Passive thermal management can be achieved through the design of components using engineered lattices
- Target performance can be attained by varying material and geometry
- > Benefits
 - Integrated, minimal-mass, multifunctional design, e.g. load bearing and thermal management

Acknowledgements

- CCEFP
- > NSF
- MSOE faculty
- Past, and present, assistants, REU's & RET's

This material is based upon work supported by the National Science Foundation's Engineering Research Center, the Center for Compact and Efficient Fluid Power (CCEFP), under Grant No. EEC-0540834. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author and do not necessarily reflect the views of the National Science Foundation.

Thank you!

Questions?

Onset of Convection

Cell Size vs. Temperature

Geom.-Dependent Keff

Simple Cube

```
Kxx(x,y,z) = 7.098\emptyset x^2 + 24.463\emptyset y^2 + 24.484\emptyset z^2 + 33.195\emptyset x\emptyset y + 33.204\emptyset x\emptyset z  + 7.391\emptyset y\emptyset z + 54.746\emptyset x - 25.441\emptyset y - 25.465\emptyset z Kyy(x,y,z) = 24.491\emptyset x^2 + 7.094\emptyset y^2 + 24.473\emptyset z^2 + 33.190\emptyset x\emptyset y + 7.380\emptyset x\emptyset z  + 33.181\emptyset y\emptyset z - 25.463\emptyset x + 54.755\emptyset y - 25.443\emptyset z Kzz(x,y,z) = 36.417\emptyset x^2 + 36.373\emptyset y^2 + 77.304\emptyset z^2 - 24.288\emptyset x\emptyset y + 28.356\emptyset x\emptyset z  + 28.318\emptyset y\emptyset z - 20.033\emptyset x - 19.977\emptyset y + 28.343\emptyset z
```

Ultra Cube

```
Kxx(x,y,z) = 232.076\emptyset x^2 + 176.753\emptyset y^2 + 176.7531\emptyset z^2 - 205.439\emptyset x\emptyset y - 205.437\emptyset x\emptyset z - 120.536\emptyset y\emptyset z + 26.394\emptyset x + 37.753\emptyset y + 37.747\emptyset z
Kyy(x,y,z) = 176.760\emptyset x^2 + 232.100\emptyset y^2 + 176.751\emptyset z^2 - 205.453\emptyset x\emptyset y - 120.55\emptyset x\emptyset z - 205.456\emptyset y\emptyset z + 37.750\emptyset x + 26.383y + 37.761\emptyset z
Kzz(x,y,z) = 176.755\emptyset x^2 + 176.755\emptyset y^2 + 232.100\emptyset z^2 - 120.556\emptyset x\emptyset y - 205.462\emptyset x\emptyset z - 205.457\emptyset y\emptyset z + 37.750\emptyset x + 37.757\emptyset y + 26.386\emptyset z
```

Super Cube

```
\begin{split} Kxx(x,y,z) &= 198.514\emptyset x^2 + 232.055\emptyset y^2 + 228.267\emptyset z^2 - 183.149\emptyset x\emptyset y - 186.909\emptyset x\emptyset z \\ &- 206.603\emptyset y\emptyset z + 50.686\emptyset x + 19.065\emptyset y + 25.510\emptyset z \\ Kyy(x,y,z) &= 231.324\emptyset x^2 + 197.766\emptyset y^2 + 231.324\emptyset z^2 - 185.432\emptyset x\emptyset y - 205.144\emptyset x\emptyset z \\ &- 185.432\emptyset y\emptyset z + 20.690\emptyset x + 52.332\emptyset y + 20.690\emptyset z \\ Kzz(x,y,z) &= 229.014\emptyset x^2 + 229.031\emptyset y^2 + 199.260\emptyset z^2 - 208.119\emptyset x\emptyset y - 184.677\emptyset x\emptyset z \\ &- 184.664\emptyset y\emptyset z + 23.892\emptyset x + 23.871\emptyset y + 49.069\emptyset z \end{split}
```