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Abstract: The nematic elastomers with hybrid
alignment (HNEs) exhibit large anisotropic and
non homogeneous volume changes, which can in-
duce noticeable changes in their configuration.
Here, we deal with LCEs having hybrid align-
ment (HNEs), that is, fabricated with a given
non-homogeneous nematic orientation. For such
a materials, permanent distortions induced by
deswelling can be compensated by those resulting
from cooling below T ; it results the possibility of
producing temperature-driven actuators.
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1 Introduction

Liquid crystal elastomers (LCEs) possess very in-
teresting properties stemming from the interaction
between liquid crystal order and rubber elasticity
[1]. For such materials, thermally-induced phase
transition from the isotropic to the nematic phase
may induce very large distortions, see Figure 1,
which, in turn, can affect the overall configuration
of a macroscopic specimen.

A particular class of LCEs features two sorts of
large anisotropic phase transitions: the first one is
a deswelling due to solvent evaporation, that mani-
fests during preparation; the second one, thermally
induced, is due to an isotropic-nematic phase tran-
sition. Both phenomena can produce noticeable
changes of configuration in a given specimen, but,
while deswelling induces permanent changes, the

isotropic-nematic phase transitions are reversible:
cooling below a transition temperature Ty pro-
duces the nematic phase, whose effects become
larger as the temperature decreases; heating above
TN restores the isotropic one.

Here, we deal with LCEs having hybrid align-
ment (HNEs), that is, fabricated with a given
non-homogeneous nematic orientation. For such

a materials, permanent distortions induced by
deswelling can be compensated by those resulting
from heating; it results the possibility of producing
temperature driven actuators. See [3] for a detailed
description about preparation of HNESs, and exper-
imental results.
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Figure 1: If the stress-free shape of a mesoscopic
chunk of LCE is a spherical ball when the ap-
pended mesogens are in the disordered, isotropic
phase (left), its stress-free shape in the ordered, ne-
matic phase is a prolate spheroid whose polar axis is
aligned with the prevailing mesogen direction. LC
molecules are caricatured grossly out of scale.



2 The physical model

We model the HNEs in the framework of 3D incom-
pressible non-linear elasticity with large distortions
[2]. We represent the nematic orientation with the
nematic tensor field! N:=n®n, with n a unit vec-
tor field (|n| = 1); the elastomer distortions we deal
with are uniazial stretch aligned with mesogen ori-
entation N:

UOZ/\”N-F)\J_(I—N), (2.1)
where I is the identity, and the scalars A, AL rep-
resent the magnitude of the strains along n, and in
the plane orthogonal to n, see Fig.(1). We shall use
(2.1) to represent both swelling- and temperature-
induced distortions. A key feature of HNEs is that
they can be fabricated with a given, possibly non-
homogeneous, nematic orientation IN; moreover,
the stretches A\, AL are sensible to solvent evap-
oration and temperature.

2.1 Swollen Nematic Gels

We consider a material whose state is described,
apart from a displacement field, by the pair (9, v):
the first parameter ¢ = T'/Ty is the ratio between
the actual temperature T', and the transition tem-
perature Ty ; the second one measures the volume
change occurring during deswelling.

Our specimen is prepared in the wet-nematic
state (J,,1), with ¥, < 1 the preparation tem-
perature, and undergoes two phase transitions:
deswelling at constant temperature ¢,, until a
fully dry state with v = wvg; heating at constant
deswollen ratio vy, until a temperature ¥ > 1, see
state diagram in Fig.(2). Given the four points in
the diagram

a=(1,1),b=1,vq), c= (9n,1), d = (I, va),

they can be connected with four maps: D*(v),
D" (v) represent deswelling distortions (at constant
temperature), in the isotropic and in the nematic
state, respectively; A (9), A%(¥) represent the
cooling distortions (at constant deswelling) in the

INot to be confused with the nematic order tensor. The
nematic tensor N is the proper kinematics descriptor as it
accounts only for the orientation of molecules, without dis-
criminating between +n and —n.

wet and in the dry state, respectively, see Fig. (2).
The four maps satisfy:

Di(1)=1I,D"(1) =1, A¥(1) =1, A1) =1;

moreover, deswelling is accompanied to volume
variation, while isotropic-nematic transition is vol-
ume preserving; thus: det D(v) = det D"(v) = v,
det A¥(09) = det A4(¥9) = 1.
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Figure 2: State diagram showing the phase transi-
tions we consider.

A distortion from point a to a generic state (¢,v)

is described by the map F,
F,(0,v) = AY(9) Di(v). (2.2)

In order to have the point ¢ as reference, we con-
sider the map F,
F,(9,v) = F,(9,v) A¥(9,)" . (2.3)
From
AY(¥,) =D"(v) " A®,) D' (v), (2.4)

it follows that, to describe a path starting from c,
only A? and D" are needed:

F,(9,v) = A%(9) D'(v) [D"(v) ! A%(9,) D*(v)] !
= AY9) Ad(¥,)" D" (v).

It is worth noting that equation (2.5) implies gljt)
V9=0,,v=1 =F,=1I,
d=19,,v<1 =TF,=D"(v), (2.6)
d=1,v<1 =F,=A%0,)" D" (v).



The distortions D"(v) and A9%(¥) are uniaxial
stretches, sharing the same representation formula
(2.1); here, we shall denote with «(v) and A(¢)
the swelling- and temperature-induced stretches,
respectively:

D"(v) =a)(v)N+ay(v)(I-N),

AlW) = N@ON+A@A-N), &0
where, as consequence of volume constraints:

aiv)at(v)=v, N@)IN@W)=1. (28)

Moreover, given (2.7), F,(¢,v) admits a straight-
forward representation
P _ A ay(v)

F,(9,v) = N (00) N+

AL(9) ag (v)
AL ()

(I-N).

(2.9)
Let F denote a deformation with respect to the wet-
nematic state (point c), and let C = FTF be the
associated strain; the elastic deformation F¢ and
the elastic strain C¢ are given by

F°=FF,! C°=(F)'F°=F, CF,";
(2.10)
we consider a Neo-Hookean elastic energy density

¢=5u(C-I-3)=5u(C-C;'-3),

det(C,) = v?,
(2.11)
with p the shear modulus, and C, the distortional
strain induced by F,:

Co(9,v) = F/ (0,v) Fo(9,0). (2.12)

It follows from (2.11) that C = C, is a minimum;
we can easily verify that the wet-nematic state re-
alizes the reference configuration:

(W,v) = (Up,1) = F,=1=C,=1= C=1I;

moreover, to C, o I there correspond a homoge-
nous state, that is, a flat configuration; thus, a
noteworthy consequence of (2.9) is that it can be
used to determine the temperature 9J; correspond-
ing to such a flat state. Being C, = F2, the condi-
tion C, o I is equivalent to F, o I; it follows that
¥ satisfies

/\H(ﬁf)aﬁ _ /\L(ﬁf)o/j_ .

Actually, from experimental data [3], we know the
deswelling distortions at the completely dry state,
and the expressions relating the temperature to the
cooling distortions, that is, we know:

aﬁl = (vq), ozdL =] (vq),

1+ B8(1—9), e W 1);
A (9) = {
17
(2.14)

By using the relations between A, AL, equation
(2.13) may be solved explicitly for Ay := A (Jy):

9>1.
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(2.15)
Then, inverting the function ¥ + X (), we can
compute the flat temperature

/\f_l)l/a
Pr=1-— .
d ( 8

We note that the nematic orientation IN does
not enter in the formula for the flat temperature;
nonetheless, it plays a key role for the stress state
realized in configurations different from the flat
ones.

(2.16)

3 Model implementation

We consider as reference configuration a paral-
lelepipedal body £ of sides L x W x H represent-
ing the HNE at the preparation state (wet-nematic;
point ¢ in Fig.(2)). We denote with {o;x,y,2} a
Cartesian frame having its origin o at the center of
A, and the three axes aligned with L, W, and H,
respectively. We assume the nematic tensor N to
lie in the plane z, z, and having a linear variation
along z, with N parallel to z at z = —H/2, and
N parallel to « at z = H/2. The specimen is un-
loaded, clamped at the face x = —L/2 and free on
other faces.

We implement the balance equations of non-
linear elasticity in weak form, using the volumetric-
deviatoric decomposition of the deformation mea-
sures, and adopting a mixed method. Thus, we
have as independent variables the displacement
vector u, and the pressure p; given F = I+ Vu, we



consider the following relaxed strain energy density:
br = s + ¢y, with

bs = %u (Cs-C;1 —3) isochoric energy;

by = g (J —v)? volumetric energy;
C.=(v/J)??C unimodular part of C;
p=—-k(J—v), pressure;

J = det(F), volume change;

(3.17)
and k£ the bulk modulus. The reference and the
actual stress are then given by

S =2F¢ Sscl_i‘z — pF*,
(3.18)
T =S(F*)!

with A* = A~ denoting the cofactor of A, and

s 1 1 .
= = — I —_ = € e
SSC 0Ce 2 'uJﬁ 3 tI‘(C )(C ) ’
(3.19)
where J, = det(F°¢) = J/v. It follows
S=uvFC;! —pF*;
(3.20)
T:uJiFeFZ—pI.

3.1 Balance equations

Balance equations are implemented using a mixed
L2-L1 method, that is using second- and first-order
Lagrangian shape functions for the displacement
and the pressure, respectively. The problem is then
stated follows: find a displacement u, and a pres-
sure p such that, for all test function u, and p it
holds:

0,

Z%(—S~Vﬁ+fﬁ)

(3.21)
/(%+J_@y5:m
B
with u = 0 at = —L/2. From (2.12), (3.20)
it follows that the reference stress is a function of
the independent variables u and p, and of the state
variables (9, v):

S = S(u, p;¥,v). (3.22)

N

Figure 3: Results from numerical experiments.
From top to bottom: dry state at preparation tem-
perature v,; nearly flat state at ¥ ~ ¥y; isotropic
state at ¥ = 1. Wireframe renders the preparation
state; five cross sections highlight bending.

Thus, we can solve (3.21) for u and p, using the pair
(9,v) as parameters; in particular, using the para-
metric solver, we first simulate deswelling, by solv-
ing a sequence of IV elastic problems corresponding
to (Un,v;), with v1 = 1, vy = vg < 1. The final
solution we obtain corresponds to the dry-nematic
state, and it is used as initial data to simulate the
heating process; thus, we solve another sequence
of N elastic problems for (¥;,vq), with V1 = ¥,
Iy = 1.



Curvature VS Temperature (HNE-83 & HNE-36)
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Figure 4: Curvature versus temperature. The plot
shows the results from numerical (solid line) and
actual (dotted line with marker) experiments for
two similar specimens having different thickness
and length (H = 108 ~ 46 um).

4 Results

We simulated the behavior of different paral-
lelepipedal specimens under deswelling and heat-
ing, with the goal of reproducing actual experi-
ments. Fig.(3) shows three snapshots from numer-
ical experiments: the wireframe renders the prepa-
ration state of the specimen undergoing a very large
bending during deswelling (top) and a counter-
bending during heating (top). Fig.(4) shows cur-
vature versus temperature for two same specimens
differing in height H and L: numerical results
(solid line) is benchmarked against experimental
data (dotted line with “0” and “+” markers) as
published in [3]. As expected, curvature is very
sensitive to thickness H, whose values are reported
in the figure, and is not to length L or width W.
Values of parameters used in our simulations are
given in table 1.

5. Conclusion

The outcome from the numerical implementation of
the present problem is twofold: at first, we assess
the effectiveness of the underlying physical model
and we tune the material parameters which are dif-

Table 1: Parameter list

Symbol  Value Description
L 2000 ~ 1400 um  length
W 500 pm width
H 108 ~ 46 um thickness (wet)
Vg 0.45 wet/dry vol. ratio
aﬁ 0.82 o at vg
a‘j_ 0.74 o at vy
0.5 parameter for (2.14)
B 0.68 parameter for (2.14)
Tn 363 K transition temp.
T, 313 K preparation temp.

ficult to measure; then, we can predict distortion-
induced shape formation in specimen with non triv-
ial initial configuration.

Results from numerical and actual experiments
agree very well, as Fig.(4) shows; thus, we are con-
fident that our numerical simulation could be useful
in designing micro actuator based on HNEs prior
to their actual production.
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