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Abstract: The study of semi-solid aluminum and 
magnesium alloy systems is of scientific and 
technological importance since they exhibit 
enhanced castability as well as superior 
mechanical properties compared to conventional 
ones owing to their refined microstructure. When 
a metallic melt undergoes severe shear during 
solidification a refined microstructure usually 
results although a quantitative relationship 
between imposed shear and nucleation density is 
still obscure. 
The present study is inspired by the theoretical 
work of Schneider and co-workers, who 
developed a crystallization kinetics to investigate 
the flow induced crystallization in polymers 
using an experimentally measured nucleation 
rate in function of shear stress tensor. 
This theory is here adapted to assess its 
phenomenological suitability in simulating 
combined temperature- and shear-induced 
solidification effects in  aluminum alloys melts. 
Essentially, the reference hardware system 
consists of a cooled rotating stepped shaft and a 
hot mould containing the liquid metal. 
The COMSOL Multiphysics program is invoked 
to solve the inherent coupled problem involving 
a set of non linear ordinary differential 
equations, for aluminum solidification, and the 
convective momentum and energy transport 
partial differential equations, for the heat and 
momentum transport of liquid and semi-solid 
aluminum. The results are expressed in terms of 
shear- and thermally-induced solid fractions for a 
specified angular speed of the shaft. 
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1. Introduction 
 
Semi-solid processing aims at producing 
advanced aluminum alloys castings starting from 
specified fractions of shear-induced solid and 
liquid [1]. Most of the published papers in 

modeling and simulation deal with the rheology 
of semi-solid systems [2] while a minor set of 
them handle the coupling of liquid transport and 
solidification kinetics, mainly from an 
experimental viewpoint. Among the latter, very 
few take into account for both thermal and shear-
induced effects on solidification either 
experimentally or computationally.  
The present work attempts to model the 
rheocasting process of aluminum alloys by 
coupling the Schneider and co-workers’ 
crystallization theory with the liquid metal heat 
transfer and momentum transport partial 
differential equations. The unique advantage of 
the proposed theory, which originates from the 
flow-induced crystallization theory of polymers 
[3,4], is that it discernes between the nucleation 
of the solid fraction induced by temperature and 
that induced by shear. 
The rheocasting process may involve during 
solidification either mechanical or 
electromagnetic stirring of the melt to attain the 
desired “semi-solid state”. The viscosity of the 
mushy alloy is a complex function of the formed 
solid fraction, temperature and shear rate. Beside 
homogenization of the melt, stirring before 
casting is found to be effective in the grain 
refinement of the microstructure [5]. 
Regardless the stirring method the mushy metal 
is then injected into a shaped mould to produce 
the final casting.  
 
 
2. The Rheocasting Model 
 
The rheocasting process arrangenment is 
sketched in Fig. 1. It includes a hot isothermal 
mould, containing the liquid metal, and a 
rotating cooled stepped shaft. The geometry of 
the shaft is so selected to maximize the contact 
area between the cooled rotating shaft and the 
hot metal. The cooling effect imparted from the  
cooled rotating shaft to liquid metal is modeled 
by specifying suitable convective boundary 
conditions. 



As the modeled geometry is axial symmetric 
only half region is worth of investigation. 
 

       
Figure 1. The rheocasting geometry system. 
 
 
2.1 The Momentum Transport equation: 
Swirl Flow model  
 
The metal flow in the mould is described by the 
Navier-Stokes equation:  
 
ܝ)ߩ ∙ ܝ(∇ =  ∇ ∙ +۷݌−] +ܝ∇)ߟ [(்(ܝ∇) + ۴ (1) 
 
∇ ∙ ܝ = 0          (2) 
 
 
2.2 The Energy Transport equation: 
General Heat Transfer model  
 
The temperature change in the liquid system is 
computed by resorting to the heat-convection 
equation: 
 
∇ ∙ (−݇∇ܶ) = ܝ௣ܥߩ  ∙ ∇ܶ      (3) 
 
in which k is thermal conductivity, ߩ is density, 
 ௣ is heat capacity and u is field velocity. Theܥ
convective term takes into account the heat 
extracted from the stirring liquid metal by the 
cooled rotating shaft. 
 
 
2.3 The Solidification Kinetic Model 
 
According to Schneider and co-workers's theory 
[3,4] the total solid fraction α formed during 
cooling and stirring of the liquid metal is a result 
nucleation and growth induced by two combined 
effects, i.e, cooling (i.e. thermal) and shear (f). 
This is mathematically expressed as: 

α(t) =  1− expቀ−φ଴
୥୪୭ୠୟ୪(t)ቁ     (4) 

 
where  ߮଴

௚௟௢௕௔௟  is the total volume of crystallized 
solid, being made of  two contributions, i.e.,: 
 
φ଴
୥୪୭ୠୟ୪ =  φ଴

୘ +φ଴
୤         (5) 

 
  
2.3.1 Temperature-induced solidification 
kinetics 
 
The total thermally-induced crystallized volume 
fraction ߮଴் is calculated by the following set of 
coupled ordinary differential equations ( see eqs. 
6): 
 
߲߮ଷ்

ݐ߲ + ܝ ∙  ∇߮ଷ் = ଷ்߮)        ்̇ܰߨ8 =  (்ܰߨ8

 

 

߲߮ଶ்

ݐ߲
+ ܝ ∙  ∇߮ଶ் = ଷ்்߮ܩ         (߮ଶ் = ௧௢௧்ܴߨ4 ) 

 

(6) 

߲߮ଵ்

ݐ߲ + ܝ ∙  ∇߮ଵ் = ଶ்்߮ܩ         (߮ଵ் = ܵ௧௢௧் ) 

 

 

߲߮଴்

ݐ߲ + ܝ ∙  ∇߮଴் = ଵ்்߮ܩ         (߮଴் = ௧ܸ௢௧
் ) 

 

 

where ்ܩ is the linear growth rate and ்ܰ is the 
thermally-induced nucleation density. Thus, it is 
assumed that both quantities  are only function of 
the local liquid temperature. Their respective 
formulations will be discussed later. 
 
 
2.3.2 Shear-induced solidification kinetics 
 
The total shear-induced crystallized volume 
fraction ߮଴

௙ can be defined analogously to eqs.6, 
by a set of coupled ordinary differential 
equations (see eqs. 7): 
߲߮ଷ

௙

ݐ߲ + ܝ ∙  ∇߮ଷ
௙ = ௙        (߮ଷ̇ܰߨ8

௙ =  (௙ܰߨ8
 

 

߲߮ଶ
௙

ݐ߲
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௙ = ଷ்߮ܩ
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௙ = ௧௢௧ܴߨ4
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௙
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௙ = ௧ܸ௢௧
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where ܰ௙  is the nucleation density promoted by 
the local shear stress, i.e., in a point of the 
solidifying liquid metal. 
 
 
3. The Coupling Solution Strategy  
 
As the primary purpose of this work is to test the 
phenomenological adequacy of the kinetic 
formalism to model rheocasting of aluminum 
alloys, a quasi steady-state solution for the liquid 
transport is preferred, as it is more effective and 
less time consuming. This approach is indeed 
advisable at any preliminary setup or design 
stage of a new rheocasting process hardware. 
However, a suitable time coupling between the 
solidification kinetics and the quasi-steady state 
transport model has to be established. This 
imposes the definition of suitable phenomeno-
logical time  for the transport model.  Note that 
for more rigorous rheocasting simulations a fully 
coupled time dependent fluid transport and 
solidification kinetics is mandatory.  
With reference to the arrangement of Fig. 1, we 
can define an equivalent time as the ratio 
between the local radius r and the modulus of the 
local velocity u. Thus, the closer is the liquid to 
the rotating shaft, the faster will be the 
solidification. Analogously, the larger is the 
velocity of the liquid in the stirring stage, the 
faster is the solidification. 
The thermal conductivity, heat capacity and 
density are all functions of the formed solid 
fraction by the well-known mixture rule: 
 
k = α ∗ kୱ + (1 − α) ∙ k୪      (8) 
 
C୮ = α ∗ C୮ୱ + (1− α) ∙ C୮୪      (9) 
 
ρ = α ∗ ρୱ + (1 − α) ∙ ρ୪      (10) 
 
where the superscripts “l” and “s” denote liquid 
and solid respectively. 
The viscosity of the semi-solid depends on the 
viscosity of the liquid ߤ௟ and is assumed to be a 
linear function of  temperature: 
 
ߤ = ௟ߤ + ்݉ ∙ ܶ        (11) 
 
whereas  ்݉ is a constant given in Table 4. 

The fundamental Newton’s law relates the shear 
stress ߬ to the shear rate ̇ߛ through the viscosity 
 :,.i.e ,ߤ
 
߬ = ߤ ∙  (12)           ߛ̇

 
To make the overall rheocasting model 
computationally fast some further simplifying 
assumptions are made in the kinetic model 
outlined in Section 2.  
Specifically, the convective terms (i.e the second 
term in the left hand side of eqs. (6) and (7)  can 
be reasonably neglected [11].  
The quasi-steady state trasport model for the 
liquid metal allows us to consider both 
nucleation and growth rates as constants. Thus, 
on integrating with respect to time the set of four  
kinetic equations reduces to the well-known 
KJMA-type kinetic equations. This applies for 
both the temperature- and the shear-induced 
kinetic model. Accordingly, the resulting solid 
fraction from the temperature-induced kinetics 
is: 
 
α(t) =  1− exp(−K୘(T) ∙ tସ)     (13) 
 
where KT is a gross rate constant being function 
of nucleation and growth rates [6]. This gross 
rate constant is readly determined provided that a 
set of time, temperature, solidification curves 
(TTS)  are available. These curves are very 
similar to the C-shaped conventional TTT curves 
and span over the entire solidification range. An  
example of TTS can be found in reference [7]. 
Finally, the gross rate constant KT can be 
calculated by calculating three constants, 
namely, a, b, and c [6].  The simple derivation of 
these three constants takes advantage from the 
parabolic shape of the  TTS curves: 
 
K୘(T) = exp(−a ∙ (T − b)ଶ − c)       (15) 
 
ܽ = ௡

(்ᇲି௕)మ
݈݊ ௧ᇱబ .ఱ

௧బ
              (16) 

 
ܾ = ௡ܶ௢௦௘           (17) 
 
ܿ =  − ln(ln(2)  ଴௡)         (18)ݐ/
 
where n, t0, T', t'0.5, Tnose are read from the TTS 
curves [6]. The three constants have to be 
computed along the 50% solid fraction curve [6]. 



The TTS curves have to be completed with 
additional information related to the given alloy. 
For instance, the equilibrium eutectic 
temperature of the alloy has to be introduced as 
upper asymptotic line of the TTS curves.  In the  
bottom of the diagram, another (asymptotic) 
horizontal line has to be drawn. The region 
below this line represents the metastable state of 
a strongly undercooled melt which we assume to 
be fully solid. The initial temperature of the 
liquid in the mould can be set to be 100 ºC above 
the eutectic temperature (i.e. 577 ºC for the 
selected alloy).  
 

 
 

Figure 2. The assumed “C” shaped TTS curves. 
 
The procedure illustrated for the temperature-
induced solidification kinetics identically applies 
to the shear-induced solididification kinetics. In 
this case, the resulting shear-induced solid 
fraction is given by: 
 
α(t) =  1− exp ൫−K୤(T,τ) ∙ tଷ൯    (19) 
 
As can be seen the main difference between the 
temperature- and shear-induced kinetics 
concerns the gross rate constants,  ܭ௙ and ்ܭ, 
and the time exponents which are 3 and 4 
respectively. This implies that the former 
kinetics is expressed in terms of the nucleation 
density whereas the latter is expressed in terms 
of the nucleation rate. However, this choice is 
not unique, here it is suggested by mere analogy 
to polymer science. Accordingly, the nucleation 
density N୤ is assumed to be proportional to the 
shear stress τ: 
 
܎ۼ = ۱ ∙  (20)        (ૌ)ܛ܊܉
 

where C is a proportionality constant. Also in 
this case, other authors prefer similar relationship 
in terms of the nucleation rate [4]. 
Following Schneider and co-workers’ theory, G୘ 
can be assumed to be the same for both 
temperature- and shear-induced solidification. 
Using the Umemoto approach [6], the linear 
growth rate can be expressed by: 
 
GT = ݁ܶ)ߚ  − ܶ)2 ∙ exp ቀ ܧ

ܴܶ
ቁ     (21) 

 
in which β is a proportionality constant, Tୣ is the 
eutectic temperature, E is the activation energy 
for the silicon diffusion in the liquid aluminum 
[9] and R is the gas constant. 
To calculate the K୤(T, τ ) in eq.19 the C and β 
constants have to be found experimentally.  For 
simplicity, we can combine the two constants in 
a single constant, i.e., C ∙ βଷ and use only one 
constant  as adjusting kinetic parameter during 
the simulation of the rheocasting process. 
The introduced GT is defined over the same 
temperature range of the TTS curves. In Fig. 2, 
this temperature range corresponds to 577 and 
500 ºC. 
Finally, two more constraints are introduced to 
fullfil the TTS curves of the given alloy: 

- for temperatures above 577 ºC (+1 ºC), 
only liquid exists 

- for cooling rates above the critical 
cooling rate, only solid exists. 

The critical cooling rate of an alloy system is 
defined in the same way as to solid state phase 
transformations. This is given by that cooling 
curve which is tangent to the nose of the TTS 
curve at 1% solid fraction. 
 
 
4. Model Implementation in Comsol 
Multiphysics 
 
The developed rheocasting employs the “Swirl 
flow” and the “General heat transfer” 
applications modes of Comsol Multiphysics 3.5. 
The following results are computed with a 
rotational speed of the shaft ω of 0.1 rad/s. 
The calculated domain geometry is shown in Fig. 
3. The associated boundary conditions are 
detailed in Table 1 and Table 2, with the help of 
Fig. 3. 



 

 
 
Figure 3. Computational domain and boundary 
conditions (see Table 1 and 2 for reference). 
 
 
4.1 Swirl flow boundary conditions 
 
The related boundary conditions are given in 
Table 1. 
 

Boundary Type Condition Value 
1 Symmetry 

boundary 
Axial 

simmetry 
 

2;29 Wall Logarithmic 
wall function 

௪ାߜ = 100 

16 Wall Slip   

3;4;5;6;7;8; 
9;10;11;12;13 

14;15;17;18;19; 
20;21;22;23;24; 

25;26;27;28 

Wall  Sliding wall ܷ௪ = 0 
௪ݓ =  ݎ߱
௪ାߜ = 100 

 
Table 1. Swirl flow boundary conditions. 

 
 
 
4.2 General heat transfer boundary 
conditions 
 
The convective heat transfer in the liquid phase 
is enabled in order to couple the heat transfer 
model to the swirl flow model.  
The asscociated boundary conditions are 
reported in Table 2. 
 
 
 

4.3 Domain discretization and solvers 
 
The computational domain is discretized with 
13660 triangular elements. Further discretization 
is performed manually at singular regions, such 
as the cornes of the stepped shaft.  
 

Boundary Boundary 
condition 

Value 

1 Axial simmetry  
2;16;29 Temperature ଴ܶ = ܭ° 950  

3;4;5;6;7;8; 
9;10;11;12;13 

14;15;17;18;19; 
20;21;22;23;24; 

25;26;27;28 

Temperature ଴ܶ = ܭ° 300  

Table 2. Heat transfer boundary conditions. 
 
The coupled swirl flow and the general heat 
transfer model is solved using the “stationary 
segregated” solver and default tolerances and 
parameters settings except for the temperature 
field variable which tolerance is set to 0.01 to 
facilitate the solution convergence. 
 
 
 
4.4 Physical Constants 
 
The used general constants are listed in Table 4. 
 
 

Constant Value Ref 

߱ 0.1 pi [rad/s] 
  ௟ 0.0023 [Pa s] [8]ߤ 

  ௟ 2460 [kg/(m3)] [8]ߩ

݇௟ 90 [W /(m K)] [10] 

݇௦ 120 [W /(m K)] [8] 

 ௣௦ 958 [J / (kg K)] [8]ܥ

௣௟ܥ  1054 [J / (kg K)] [8] 

  ௦ 2750 [kg/(m3)] [8]ߩ

E 136 [kJ / mol] [9] 

்݉ (-1.45 (10-4)) [Pa s/K] 
 [mm / (s K2)] 54 ߚ 
 C 10଻ [1 / (Pa m3)] 

R 8.31 [J/(K mol)] 
  

Table 4. Physical constants. 
 
 



5. Results and discussion 
 
Figures 4 and 5 demonstrate the basic features of 
the new solidification kinetic model 
independently of momentum and energy 
transport effects. Figures 4 shows the 
crystalization curves at a local point identified by 
a constant temperature of 550 ºC and a constant 
shear of 2.5E-3 Pa. The solid line denotes 
thermal effect only. The dashed line combines 
thermal and imposed shear.  Figure 5 shows 
similar crystallization curves for a lower 
temperature.  Figures 4 and 5 clarify the 
difference in the solidification kinetics when the 
shear and the thermal effects contribute 
separately to solidification.  
 

 
Figure 4. Temperature-induced solid fraction at 550 °C 
(solid line); combined temperature- and shear- induced 
solid fraction for a constant shear stress of 2.5e-3 Pa 
(dashed). 
 

 
Figure 5. Temperature-induced solid fraction at 520 °C 
(solid line); combined temperature- and shear- induced 
solid fraction for a constant shear stress of 2.5e-3 Pa 
(dashed). 

 
In the following figures the solidification 
kinetics is solved simultaneously with the 
transport equations to simulate the overall 
rheocasting process. 
The transport equations are solved in quasi-
steady state condition with a constant angular 
velocity of  0.1 rad/s of the shaft. At each point 
within the melt the liquid flow and the thermal 
conditions are related to the solidification 

kinetics by assuming an equivalent time defined 
as the ratio of the radius to the local velocity.  
The solidification at each point is controlled by 
three basic factors, namely, temperature, 
equivalent time, and shear stress. The latter, in 
turn, is function of two more factors, namely, the 
shear rate and the liquid (or semi-solid) 
viscosity.  Figures 6-8, show the behaviour of 
these three factors in the liquid/semi-solid 
region. 
Fig. 6 helps identify the region in the melt 
susceptible of solidification. The solidification 
range equals to 773-850 K for the assumed alloy. 
 

 
Figure 6. The first controlling factor: temperature. 

 
Figure 7 shows that the equivalent time is larger 
for larger radii and viceversa. Its maximum value 
is reached at both the top and the bottom of the 
mould as expected.   
 

 
Figure 7. The second controlling factor: equivalent time. 

 
Figure 8 captures the combined effect on the 
shear stress imparted by the metal viscosity and 
the shear rate. The former increases as the radius 
(and incidentally also temperature) decreases. 
The latter increases as the radius increases.  The 
overall effect is that the absolute value of the 
shear stress is maximum along the vertical gap 
existing between the shaft and the mould wall 
(see also Fig.11) . 
 



 
Figure 8. The third controlling factor: shear stress. 

 
In the following Figs. 9-11 the solid fraction 
separately induced by temperature and shear are 
compared.  The rotating vertical column of the 
liquid exhibits two large macrocells which touch 
each other at the mid-height of the mould. 
Between the four steps of the shaft there exist 
three liquid regions characterized by minor cells 
which denote a severe stirring of the liquid metal 
near the shaft. 
The brown region in Fig. 9 represents the 
solid fraction formed upon rapid cooling 
(very small equivalent times). As expected, 
the solid is formed preferentially around the 
steps of the shaft as a result of the rapid 
cooling. This solid originates from a melt 
which has experienced a cooling rate larger 
than the critical one.  
 

 
Figure 9. Thermal induced solid fraction. 

 
Figure 10 shows the solid formed for lower 
cooling rates. This liquid is processed by the 
implemented kinetics together with the TTS 
curves. The related thermally induced 
solidification occurs in a very narrow 
region. This results from the assumed TTS 
curves and rotational speed of the shaft.  
 

 
Figure 10. Thermal induced solid fraction (kinetic). 

 
Figure 11 shows the combined temperature- 
and shear-induced solid fractions with the 
shear stress field previously shown in Fig. 8.  
As the equivalent time is very small in this 
transition region the shear-induced solid 
fraction is also very small. Larger values of 
solid fractions would be possible for longer 
times or larger shear stresses.  
 

 
Figure 11. Shear induced solid fraction. 

 
 
6. Conclusions 
 
A rheocasting model has been successfully 
developed.  It couples the transport equations 
with a new solidification kinetics which 
embodies both thermal and shear effects in the 
melt. Although futher efforts are required to 
validate the developed model against actual 
rheocasting experiments, some remarks can be 
drawn: a) only one kinetic adjusting parameter is 
required to validate the overall kinetic 
solidification model;  b) the introduced kinetic 
factors suffice to predict solidification in 
rheocasting processes. Future progress will 
concern the development of a fully transient 
rheocasting model as well as a methodology to 
build the TTS curves.  
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