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Abstract: We present an easy-to-use toolbox 
for the automated generation of reduced-order 
mixed-level models for the evaluation of 
squeeze-film damping in microelectro-
mechanical systems. The toolbox is 
programmed in JAVA and heavily exploits the 
functionality provided by the COMSOL API. 
The results obtained from mixed-level model 
simulation performed in COMSOL 
Multiphysics agree very well with 
experimental data. A benchmark of the mixed-
level model against other state-of-the-art 
analytic squeeze-film damping models shows 
that the mixed-level model is the one with the 
highest accuracy.   
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1. Introduction 
 

Squeeze-film damping describes the 
situation when fluid film in a small gap 
between one moving and one fixed plate (see 
Fig. 1) exerts viscous damping forces on the 
moving plate. The viscous forces result from 
squeezing the fluid out or in across the 
boundary and, if present, through perforations. 

The reliable estimation of squeeze-film 
damping (SQFD) is a prerequisite for the 
design of many microelectromechanical 
systems (MEMS), since the dynamic behavior 
of most of the latter is dominated by SQFD 
exerted by the air in the gap between the 
moving microstructures and the substrate. The 
proper operation of some MEMS devices does 
even depend crucially on the specific 
magnitude of total viscous damping force, i.e. 
the pressure level within the hermetically 
sealed package [1].  

Commonly, the analytical models 
presented by Bao et al. [2] and Veijola [3] are 
used for the calculation of SQFD in MEMS, 
even though a systematic experimental 
validation of these models was not available 

for several years. Only recently, Veijola et al. 
[4] and De Pasquale et al. [5] presented first 
experimental evaluations of these models at 
normal pressure. The error for some of the 
devices investigated in these evaluations 
exceeded 63%. 
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Figure 1. Illustration of a SQFD-dominated 
geometry: a suspended perforated plate is 
vibrating above a fixed plate. Due to this 
motion, the fluid in the gap between the plates 
enters and leaves across the boundary and 
through the perforation holes.  
 

These high errors are due to the fact that 
SQFD is, by its nature, a distributed effect that 
cannot be simply lumped into a single 
analytical model. Moreover, SQFD is a 
strongly fluid-mechanically coupled problem, 
i.e. not only the fluidic, but also the 
mechanical domain needs to be modeled 
accurately. 

These findings prompted us to investigate 
the potential of an alternative model for the 
calculation of SQFD, namely the mixed-level 
model (MLM), as suggested in [6,7]. The 
general idea of the MLM is to evaluate the 
Reynolds equation where applicable, using a 
spatially discretized flux-conserving finite 
network, and to employ lumped physics-based 
fluidic resistors to account for holes and the 
pressure drop along the boundaries.  

This concept also explains the prefix 
“mixed-level”: the Reynolds equation is 
evaluated using a spatial discretization 
(“distributed level”) and complemented with 



lumped fluidic resistors, i.e. single analytic 
equations (“concentrated or compact level”). 

 
2. General Workflow 

 
In order to make the mixed-level modeling 

approach as easy and as fast to use as possible, 
we implemented an automated model 
generation toolbox in JAVA that exploits the 
API functionality provided from COMSOL 
Multiphysics Version 4 on (see workflow in 
Fig. 2).  
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Figure 2. General workflow of the generation and 
simulation of MLMs using the toolbox. 
 

The procedure starts with a pure 
mechanical model of the MEMS structure built 
directly in COMSOL Multiphysics. After 
performing an eigenfrequency analysis of the 
mechanical model in COMSOL Multiphysics, 
the model as well as the results are saved as 
standard .mph file.  

The .mph file is then opened in the JAVA-
based toolbox, which automatically analyzes 
the features of the MEMS structure (see 
section 4 for details), generates the fluid-
mechanically coupled MLM and saves the 
MLM in a standard .class file. 

Finally, opening the .class file in 
COMSOL Multiphysics automatically 
implements all equations of the MLM, a set of 
coupled ordinary differential equations with 
usually between 100 and 4000 degrees of 
freedom, as General Equation objects making 
the MLM ready for simulation in COMSOL 
Multiphysics.  
 
3. Governing Equations 
 

The modal superposition technique [8] is 
used to derive a reduced-order mechanical 
model of the MEMS structure based on the 
eigenfrequencies ωi and eigenmodes iθ  
obtained from the mechanical eigenfrequency 
analysis performed in COMSOL Multiphysics. 
This modal mechanical model enables taking 
the dynamic deformation of the structure into 
account whilst SQFD is evaluated. The modal 
equation of motion for one eigenmode reads: 

2 T
i i i i eq q Fω θ+ = xt  (1) 

Here, qi and ωi denote the amplitude and 
the frequency of the i-th eigenmode. iθ  
denotes the vector of the discretized shape of 
the i-th eigenmode. iθ  is normalized w.r.t. the 

mass matrix. extF  denotes the vector of the 
external forces acting on the MEMS structure 
such as electrostatic, viscous damping and 
contact forces. The number of eigenmodes 
needs to be chosen according to the desired 
accuracy of the mechanical model. 

Assuming laminar flow and that the lateral 
dimensions of the MEMS structure are much 
larger than the vertical gap width, the 
Reynolds equation [9] is used for the modeling 
of the SQFD exhibited by the surrounding 
atmosphere: 
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Here, ρ denotes the density of the 
surrounding gas, η the viscosity of the gas, h 
the local gap height and p the local pressure. 
For the implementation of eq. 2 in the toolbox, 
we assumed the gas to be incompressible (see 
eq. 3). 
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This leads to a incompressible but still 
nonlinear Reynolds equation: 
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Eq. 4 is evaluated using a finite network 
[6,7], i.e. eq. 4 is spatially discretized using the 
mesh of the mechanical model or another one 
in order to obtain the pressure profile in the 
gap between the moving and the fixed plate. It 
is important to point out that finite networks 
are very different from finite elements. Finite 
networks primarily use a flux-conserving 
discretization scheme employing generalized 
Kirchhoffian network theory as a framework. 
Thus, finite networks do not use ansatz 
functions, but Kirchhoffian network elements 
to discretize the equation of interest on the 
mesh. The result is a Kirchhoffian network 
governed by across and through variables. In 
case of the finite fluidic network used for 
evaluating the Reynolds equation, the across 
and through variables are the pressure 
difference and the volume flow rate between 
two adjacent nodes. 

In terms of its Kirchhoffian network 
representation, the left hand side of eq. 4 
results in a nonlinear fluidic resistor that 
models the flow of fluid between two nodes 
(see eq. 5) and the right hand side of eq. 4 
results in a fluidic source (see eq. 6) that 
models the flow of air due to the displacement 
of the moving membrane: 
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Here, Qkl, Gkl and pkl denote the flow rate, 
conductance and pressure difference between 
two adjacent nodes k and l of the network. wkl, 
hkl and dkl denote the width, height and length 
of the Poiseuille flow channel between two 
adjacent nodes. 

R
ψ  denotes a correction for 

gas rarefaction effects taken from Veijola and 
are also listed in [10] and [11]. QS,k0 denotes 
the flow rate resulting from the fluidic source 
at the k-th node. Ak and  denote the nodal 
area and nodal velocity at the k-th node. 

kh

Using a finite network for the spatially 
distributed evaluation of the nonlinear 
Reynolds equation has two essential 

advantages. First, perforation holes and effects 
along the boundary, that are not accounted for 
in the Reynolds equation in its original form, 
can be easily taken into account using lumped 
models formulated in terms of across and 
through variables that are attached to the 
respective nodes of the finite network. Second, 
the gap width does not have to be constant 
from node to node, but may vary. This is very 
useful if non-uniform gap widths and/or the 
dynamic mechanical deformation of the 
MEMS structure have to be taken into account. 

The aforementioned pressure drop along 
the boundary is modeled by physics-based 
fluidic resistors that are attached to every node 
located at the boundary of the structure. The 
boundary resistance RB,k of the k-th node reads  
[10,11]: 
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Here, bk and BTψ denote the length of the 
boundary associated with the k-th node and a 
correction for gas rarefaction effects [10,11]. 

Each hole is modeled by a series of three 
fluidic resistors. The resistor RT,r accounts for 
the transition of the flow from the gap into the 
hole, the resistor RC,r accounts for the fluidic 
resistance of the hole channel and RO,r 
accounts for the resistance of the orifice of the 
r-th perforation hole [10,11]: 
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Here, hr, sr, br and Lr denote the gap width 
at the r-th hole, the side length of the square 
hole, its perimeter and its channel length. 

C
ψ and Oψ  denote corrections for gas 
rarefaction [10,11]. 

For the purpose of illustration, Fig. 3 
shows the fluidic network with lumped 
element models attached for a square plate 
with a single square perforation hole. 



 
Figure 3. Illustration of the finite network 
model with lumped models attached using the 
example of a membrane with only one 
perforation. Black 2D-boxes symbolize the 
finite network and 3D-boxes the lumped 
resistors along the boundary and at the hole. 

 
The coupling between the fluidic and 

mechanical domain is bi-directional and 
realized through the changing gap widths hk 
(see eq. 11) and the nodal damping forces 
Fdamp,k (see eq. 12) that are obtained from 
multiplying the nodal pressures pk with the 
nodal areas Ak: 
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 Here, q  and h0,k denote the vector of 
modal amplitudes and the initial local gap 
width at the k-th node. Using the vector dampF  
of all nodal damping forces, eq. 1 now reads: 

2 ( )T
i i i i damp extq q F Fω θ+ = +     (13) 

4. Automated Model Generation Toolbox 
 

Fig. 4 shows the graphical user interface 
(GUI) of the JAVA-based toolbox. The left 
section of the GUI consists of buttons that 

enable the user to open a .mph file, to select an 
appropriate number of eigenmodes, to run the 
model analysis, to generate and to save the 
fluid-mechanically coupled MLM. The right 
section of the GUI features two panels that 
display the analyzed topography of the MEMS 
structure and visualize the resulting MLM. 
 

 
 

Figure 4. View of the GUI of the JAVA-based 
toolbox that exploits the functionality offered 
by the COMSOL API. 

 
The algorithms that automatically 

recognize the topography of the structure and 
that automatically generate the MLM are the 
essential features of the toolbox (see Fig. 5). 
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Figure 5. Illustration of the algorithms 
implemented in the JAVA-based toolbox. 

 
5. Results 

 
The SQFD on various structures was 

analyzed both, numerically using MLMs and 
by measurement. Simulation and measurement 
were compared by evaluating the quality 



factor. For the simulations, the quality factor 
was extracted from the envelope of the damped 
oscillation in the time domain. For the 
measurements, the quality factor was extracted 
from the frequency domain using the 3dB-
bandwith method. The experimental setup for 
the measurements consisted of a Polytec MSA-
500 scanning laser Doppler vibrometer and a 
specifically developed pressure chamber with 
electronic pressure control (see Fig. 6).  

 
Figure 6. Experimental setup consisting of a 
Polytec MSA-500 and a specially developed 
pressure chamber with pressure control. 

 
For the sake of clarity, we will present only 

the results of one MEMS resonator and one 
radio frequency MEMS switch (RF-MEMS 
switch) in this paper. The technical details of 
the two devices are given in Table 1.  

Figs. 7 and 8 show the measured and 
simulated pressure-dependent quality factors 
of the two devices. The graphs indicate that an 
additional dissipative mechanism dominates 
the damping behavior of these structures at 
pressures lower than approx. 100 mbar and 
limits the quality factors in this regime. This is 
taken into account by calculating a quality 
factor QTOTAL from the simulated quality factor 
QMLM and a value QLIMIT extracted at minimum 
pressure: 

1 1 1

Total MLM LIMITQ Q Q
= +     (14) 

At normal pressure, the measured and 
simulated quality factors using the MLM show 
very good agreement, i.e. the relative error 
does not exceed 7%. The MLMs furthermore 
show reasonable agreement down to pressures 
of about 100 mbar. 

 
 

Device  
Resonator 

(Fig.7) 
Switch  
(Fig. 8) 

Material Silicon Gold 
Membrane width [µm] 139 140 
                  length [µm] 133 260 
             thickness [µm] 15 5 
Specified gap [µm] 2 3 
Hole side length   [µm] 13.3 20 
Number of holes  7 x 7 3 x 6 
Perforation level    [%] 46.9 23 
Resonance frequency [kHz] 44 15 
 
Table 1. Technical data of the two investigated 
MEMS devices. 
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Figure 7. Measured and simulated quality 
factors of the MEMS resonator. QMEAS denotes 
the measured quality factor, QMLM the quality 
factor obtained from MLM simulation and 
QTOTAL the quality factor from eq. 14. 
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Figure 8. Measured and simulated quality 
factors of the RF-MEMS switch.  



6. Discussion 
 

The simulated results and the measured 
data agree very well when compared to the 
models by Bao et al. [2] and Veijola [3] that 
show errors exceeding 25% already at normal 
pressure (see Table 2). 

  
 Resonator RF switch 

QMEAS 37.47 13.58 

QTOTAL,MLM 36.72 
(+2%) 

14.49 
(-6.7%) 

QTOTAL,BAO [2] 23.77 
(+36.6%) 

6.84 
(+49.6%) 

QTOTAL,VEIJOLA [3] 22.32 
(+40.4%) 

17.16 
(-26.3%) 

 
Table 1. Measured and calculated quality 
factors at normal pressure of the two devices. 
All the calculated quality factors include the 
limiting damping mechanism through QLIMIT. 
The relative error is also given within brackets. 
 

We attribute the better agreement of the 
MLM to its ability to take accurately into 
account the actual topography of the MEMS 
structure by means of its finite network and 
locally attached lumped resistors. Especially 
the RF-MEMS switch is very difficult to 
handle with analytic compact models because 
it has a very non-uniform gap [11]. 

The SQFD-limited quality factor of one 
more MEMS resonator has been simulated and 
compared with pressure-dependent measured 
data in [12]. The MLM shows an equivalent 
high accuracy. Moreover, the MLM has been 
evaluated for SQFD-damped cantilevers and 
clamped-clamped beams and showed again 
equivalent high accuracy. Unfortunately, due 
to restrictions from our project partner, we are 
not allowed to publish these results. 

In [12], the MLM is also benchmarked 
against the mixed-mode SQFD model 
presented by Veijola and Raback [13]. The 
model presented in [13] is implemented in 
COMSOL 3.5a and follows the same idea as 
the MLM, but using the finite element method. 
The benchmark presented in [12] shows that 
the MLM performs also better than the model 
presented in [13]. We believe that the better 
performance of the MLM is due to the nature 
of the models employed to account for effects 
along the boundary and the perforation holes. 
For instance, the model correcting for the 

pressure drop along the boundary is a physics-
based model in the case of the MLM, whereas 
the model used in [13] is a heuristic one. 

The issue that has yet to be addressed is the 
behavior of the MEMS structures at pressures 
lower than 100 mbar. The limiting damping 
mechanisms in this regime have to be 
identified in order to enable an evaluation of 
the corrections for gas rarefaction listed in 
[10,11] and used in eqs. 5 and 7-10. 
 
7. Conclusion 
 

The very good agreement of the 
experimental data and the results from mixed-
level model simulations at normal pressure is a 
remarkable result and demonstrates the 
accuracy and the predictive power of our 
transparent and physics-based approach.  

In particular, the mixed-level modeling 
approach outperforms the analytic model by 
Bao et al. [2] and Veijola et al. [3,13]. 

The JAVA-based toolbox, which enables 
the easy and fast generation of mixed-level 
models, makes our modeling methodology 
directly accessible to the large community of 
MEMS designers. 

 
8. Outlook 
 

Possibilities for improvement are the 
extension to compressible fluids and a 
frequency domain formulation of the MLM, so 
that the quality factor of a MEMS structure can 
also be quickly evaluated using complex 
eigenvalue analysis. 

Moreover, already available algorithms 
[14] that automatically reduce the MLM if 
many perforation holes and, thus, many 
degrees of freedom are present, could be 
implemented. 
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