

Microfluidic Systems for Cell Growth and Cell Migration Studies

Maria Dimaki¹, Pranjul Shah¹, Dorota Kwasny¹, Jacob Moresco² and Winnie E. Svendsen¹

¹DTU Nanotech – Department of Micro- and Nanotechnology, Technical University of Denmark, DK-2800, Kgs. Lyngby

²Sunstone Capital, Denmark

DTU Nanotech

Department of Micro- and Nanotechnology

Use of Comsol

- Expensive and/or time consuming fabrication processes → Need to minimize repeated fabrication runs and test cycles
- Competitive field → Design to product time should be minimized

- Comsol contribution:
 - Optimise the performance of existing designs by calculating experimental parameters
 - Design and simulate the performance of new structures
 - Explain the experimental results

Overview

- Geometry and Physics
- Cell culture chambers
 - Design 1
 - Design 2
 - Results
- Cell migration chamber
 - Design
 - Results
- Conclusion and outlook

Geometry and Physics

• Common for all systems:

- Incompressible Navier Stokes coupled with Convection and Diffusion
- Flow solved in steady state and solution stored and used to solve for the concentration with time-dependent solver
- Membrane treated as a separate subdomain controlled by Darcy's law for porous flow

The membrane

- 10 µm thick, 5 µm pore size, porosity of 0.14
- In the subdomain settings for the Incompressible Navier Stokes a body force on the liquid was added, given by $\vec{F} = -\alpha \cdot \vec{u}$
- α is a constant calculated from the Darcy number (Da) as $\alpha = \frac{\eta}{Da \cdot L^2}$
- For the 10 μ m thick porous membrane this gives $\alpha = 10^{11} \text{ kg/(m}^3\text{s})$ for a Darcy number of 10^{-4} and a viscosity equal to that of water (0.001 **Pa·s**)
- Diffusion coefficient for various species was corrected with the membrane porosity
- The validity of the Darcy approximation was tested in a 2D simulation where a geometric approximation of the membrane was designed and simulated

Cell culture chamber

- The two systems function essentially in the same way with some small differences:
 - Loading and unloading of cells by pipette (design 1) as opposed to flow (design 2)
 - Diffusion through large 5 mm circular opening as opposed to a meandering channel 500 µm wide
 - Depth of bottom chamber: 200 μm (design 1), 300 μm (design 2)
 - Depth of top chamber: 200 μm (design 1), 250 μm (design 2)
 - Perfusion inlet velocity: 9.8 μl/min (design 1), 2.5 μl/min (design 2)

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

Min: 0

Design 1

- Simulating the filling and emptying of the top chamber with a solution of streptavidin (D = 130 μ m²/s). Boundary condition at perfusion inlet was set to (t<1500), i.e. 1 M for t<1500 sec and 0 M for t>1500 sec.
- Only part of the inlet and outlet channels were simulated
- Chamber practically at max concentration after 1000 sec and almost empty 1000 sec after solution switch

x 1e-3

x 1e-4

Results

• Concentration roughly at experimental measurement point (average of simulated concentrations in a volume of 25000 µm³ just below the top

A few discrepancies

-Fluorescence signal first detectable after a certain concentration has been reached

measurements

- Unspecific binding on channel walls
- -Uncertainty regarding exact measurement point

Design 2

• Simulating the filling of the top chamber with a solution of KCI (D = 2000 μ m²/s) as part of the cell treatment protocol for cytogenetic analysis

Results

Experimentally 25 min (1500 s) were used for filling the chamber with good results

Cell migration chamber

- Parallel flow in the two channels. Inlet velocity at 1.67 x 10⁻³ m/s
- Diffusion coefficient of chemoattractant calculated to be 1.76 x 10⁻¹⁰ m²/s
- Simulation conducted in 2D
 - By treating the membrane as a subdomain with a volume force on the liquid
 - By physically designing a 10 µm thick membrane with a large number of 5 µm wide holes to achieve a porosity of 0.14 over the 2 cm channel

Results – velocity field

Darcy representation

Geometrical representation

Results - concentration

Darcy representation

Geometrical representation

Results - concentration

• Concentration gradient at the end of the channel at steady state (t = 25 s)

- ! The geometrical plot is taken at the middle of the last membrane opening (2 cm from inlet)
- ! Experimental data confirm that cells only migrate through the membrane close to the channel outlet, where the concentration is the highest

Conclusion and outlook

- Darcy modelling of the membrane gives similar results to those achieved with the geometrical representation of the membrane → Greatly reduces computational needs and geometric complexity
- Experimental results fit mostly with the theoretically predicted ones for all presented systems. Discrepancies can be due to:
 - Uncertainties for various simulation parameters such as diffusion coefficient and viscosity
 - Fabrication accuracy of the experimental device as opposed to the simulated one (micromilling error can be up to \pm 5-10 µm)
- The effect of the structural uncertainties needs to be quantified in the future

Thank you for your attention