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Abstract: Within the field of hot metal bulk 
forming the demand arises for fully three-
dimensionally tailored properties at the 
microstructural level, nevertheless, reaching a 
predefined geometry with such tailored 
properties puts high requirements on the control 
mechanisms utilized in the process chain for 
combined heating, metal forming, and cooling 
processes. Novel control strategies need to be 
implemented within an underlying control 
architecture being freely configurable with 
respect to a predefined database and fully 
extendible to new geometries, microstructural 
distributions, and materials suiting this precision 
manufacturing process with simultaneous 
applicability to industrial mass production 
processes. A simulation based rapid control 
prototyping ansatz with the help of COMSOL 
Multiphysics was followed utilizing both 
complex optimization algorithms and self 
adjusting fuzzy logic controllers leading to a 
significant reduction in controller 
implementation time.  
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1. Introduction 
 
Increasing economical competitiveness and 
simultaneous improvements in product quality 
are two foremost challenges for modern 
industrial mass production and can only be 
encountered through utilization of novel 
production processes which guarantee the 
required tailored mechanical properties within 
the workpiece, on the one hand, and reduce cycle 
time and production costs, on the other hand 
[1,2]. Moreover, the capability of achieving 
complex geometrical structures incorporating the 
aforementioned fully three-dimensionally 
tailored microstructural properties, being the 
governing parameter in terms of functionally 
graded materials, is emphasized in modern 

production in order to mass customize use and 
load case-specific products [3-5]. Within the 
framework of an ongoing research project an 
integrated thermo-mechanical process is utilized 
for the production of functionally graded flanged 
shafts entailing inductively heating a steel billet 
to a predefined temperature distribution and 
simultaneously cooling and deforming the shaft 
in a second step. Achieving locally varying 
microstructural properties is a complex 
interrelation of coupled thermo-mechanical 
phenomena, the local cooling rate of fully 
austenized material being the governing factor 
for transformations on the microstructural level. 
A high precision serial production processes for 
geometrically and microstructurally complex 
products requires an exact process control in all 
process stages in order to achieve the desired 
quality despite changing boundary conditions in 
serial production. Moreover, mass customization 
requires changing process routes and process 
parameters to be implemented within the control 
algorithms specifically tailored to the production 
goals and, hence, the control architecture is 
required to be self adapting with respect to these 
set-values. The aforementioned reasoning is 
underlined by the fact that conventional control 
algorithm development involves knowledge 
regarding the underlying differential equations 
and involves time consuming implementation 
trials requiring a high degree of process 
knowledge being not readily available in 
industrial production. An ansatz in order to 
circumvent the necessity of an accurate 
mathematical description constitutes the 
utilization of a Fuzzy Logic Controller (FLC) 
with integrated self-learning capabilities and 
online parameter adjustment which is 
implemented within the control architecture. A 
finite element rapid control prototyping approach 
using COMSOL Multiphysics 3.5a, by 
COMSOL Multiphysics GmbH, Göttingen, was 
chosen for the purpose of controller algorithm 
evaluation utilizing a fully non-linear model 
being controlled by a Matlab interface 



Figure 1. Revolved model geometry with a tailored 
temperature field of 700K in the coil vicinity. 

 
incorporating the underlying control algorithm. 
Subsequent implementation effort for the 
integration of the controller into the 
programmable logic controller (PLC) was 
significantly reduced due to the chosen 
simulation based rapid prototyping approach. 
 
2. Coupled Electro-Thermal Phenomena 
2.1 Model Geometry  
 
The model used within this context was created 
according to an existing test facility at the Chair 
of Metal Forming at the University of Kassel and 
modeled with Comsol 3.5a utilizing the heat 
transfer as well as the AC/DC module. The 
geometrical features of the cylindrical and thus 
rotationally symmetric billet are given through a 
radius of 15mm and height of 200mm. The billet 
is placed in the center of a three turn copper coil 
with inner and outer radius of 22.5mm and 
30mm, respectively. Due to the symmetry of the 
setup a 2D model was created in order to reduce 
the computational complexity. Moreover, due to 
constant rotation of the billet during induction 
heating the coil inclination was neglected 
constituting merely a minimal approximation 
error. A triangular mesh was utilized with a mesh 
size of at least 2 mesh elements per penetration 

depth δ calculated at room temperature and a 
frequency of 8kHz according to equation (5).  
Pertinent temperature dependent material 
properties are provided through interpolated 
lookup tables. Merely the magnetic permeability 
is implemented as a continuous function of 
temperature through utilization of the Gombertz 
function as discontinuities in the vicinity of the 
Curie temperature, being the temperature for 
which non-magnetic material properties result, 
caused undesired effects and significant 
decreases in solution speed. 
 
2.2 Induction Heating Theory  
 
The underlying mathematical model for 
induction heating for functionally graded flanged 
shafts is derived from a coupled multiphysics 
approach involving both electromagnetic 
phenomena and thermo-mechanical transfer 
phenomena. Within this framework we will 
implement the electro-thermo-mechanical 
continuous functions utilizing the commercially 
available software Comsol Multiphysics 3.5a and 
apply appropriate boundary conditions. The aim 
of this approach is to verify whether simulation-
based optimization can be utilized in order to 
accomplish predefined temperature distributions 
in the actual workpiece. Furthermore, computer-
based simulation allows the identification of 
pertinent impact factors regarding the spatial 
microstructure distribution, e.g. impact of the 
temporal evolution of the three-dimensional 
temperature field on the microstructure or 
demands regarding soaking time prior to metal-
forming and transfer conditions. The underlying 
simulation model is validated using data gained 
from temperature measurements in a reference 
process. 
A mathematical description of induction 
processes is given through Maxwell's equations, 
viz. for general time-varying electromagnetic 
fields the four governing equations are 
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with H being the magnetic field, B the magnetic 
flux density, E represents the electric field, D the 



electric flux, J the conduction current density, 
and ρelec the electrical charge density. In this 
context bold letters represent vectors and   
represents the Nabla operator with A  and 

·A  being the curl and divergence of a vector 
field, respectively. 
The completion of the aforementioned Maxwell 
equations can be achieved by embracing 
relations derived from the material parameters, 
being 
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with , , and  being the magnetic permeability, 
dielectric constant, and electrical conductivity, 
respectively. Moreover, J accounts to zero in the 
air. Within the considered induction heating 
process of this paper we will encounter 
frequencies in the low kHz regime, thus, we can 
utilize a magneto-quasi-static model with 

/ 0t  J D . As outlined within the previous 
section the workpiece subject to the electro-
magnetic field is an axisymmetric cylindrical 
steel billet. Therefore, both the electric field E 
and the source current density JS contain non-
zero elements only in θ-direction. By 
introduction of a magnetic vector potential A  
the magnetic flux density can be expressed as 

B A                           (3) 
and thus our equation results as 
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For the coupled electro-thermal implementation 
the consideration of temperature dependent 
material properties is of paramount importance. 
Within the context of induction heating two 
phenomena are emphasized at this point. First, 
the penetration depth δ of the induced eddy 
currents is given by the equation 
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with f being the applied induction frequency. 
Thus, δ is a strongly temperature dependent 
function as both the relative magnetic 
permeability and the electrical conductivity are 
temperature dependent. Second, as the lattice 
structure changes from a body-centered cubic 
(bcc) to a face-centerd cubic (fcc) during phase 

transformation from ferrite to austenite (α-γ 
transformation) it is of paramount importance to 
include temperature dependent values for 
material density (ρ), thermal conductivity (k), 
and heat capacity (Cp). In order to assure a 
flexible control architecture which is capable of 
handling a multitude of different materials an 
extendible material database is indispensable. 
In order to implement these phenomena in an FE 
environment a thorough understanding of the 
underlying differential equations is necessary. 
This fact requires the use of Bessel functions 
resulting from the solution of the Bessel 
differential equation, given in the general form 
as [6] 
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with a solution of n-th order of the first kind 
given by 
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with Γ being the Gamma-function described by 
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The utilization of Bessel functions originates 
from the fact that for a conducting material each 
solution of the differential equations in one point 
depends on the solution in every other point 
within the solid conductor. In case that an 
alternating current is present in a cylindrical 
conductor with components in z -direction only 
(considering the cylindrical coordinate system) 
we consider H merely in θ-direction and utilizing 
the Maxwell equations we derive [7] 
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being a zero order Bessel function of the form 
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with a solution being a linear combination of 
Bessel functions 0 ( )I kx and 0 ( )K kx given as [7] 
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with γ being Euler's constant. These complex 
valued functions can be separated into an 
imaginary and real part utilizing the fact that 
according to equations (9) and (10) 

2 / eleck    and thus 

0( ) ( ) ( )I x ber x bei x         (12) 
with ,ber bei  denoting Bessel real and Bessel 
imaginary, respectively [8]. Following [9] we 
simplify 

0 0

0 0

( ) ( )cos( ( ))
( ) ( )sin( ( ))

ber x M x x
bei x M x x

 

 
     (13) 

with 2 2
0( ) ( ( ) ( ))M x ber x bei x   and 

0( ) arctan( ( ) / ( ))x bei x ber x  . The surface 
current density JS at r=R is in phase with the 
applied voltage described by / elecE   and thus 
we get for the current density 
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which by integration over the radius and 
simplification through utilization of the fact that 
in our case R   yields the total current 

2 exp( ).
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For induction heating the first Maxwell equation 
yields the relation between current density and 
magnetic field, with respect to simplifications 
due to the symmetries and the cylindrical 
coordinate system, as 
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which results with equation (14) to 
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2.3 Thermo-Mechanical Theory 
 
For the consideration of induction heating 
processes one has to include a coupled electro-
thermal model. For the thermal modelling one 
has to embrace the heat generated through the 
eddy currents in the workpiece as well as 

transport phenomena including heat flux within 
the billet, convection, and radiation boundary 
phenomena. The temperature flux within the 
workpiece is described by the heat transfer 
equation 
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with ρ being the density of the workpiece 
material, T the temperature, t a time variable, and 
Qsource a heat source term. The heat source Q 
results from the eddy currents induced in the 
workpiece surface and is given by [10] 

2
sourceQ E                      (19) 

taken as the average over one period of the 
induction current source. Thermal boundary 
conditions for both radiation and convection 
were implemented through the equation 

4 4( ) ( )ambient rad ambientk h T T T T     T (20) 
with T=T·n, h denotes the temperature 
dependent convection coefficient, ε the 
temperature dependent emissivity, σrad the Stefan 
Boltzmann constant, and Tambient the room 
temperature. 
 
3. Temperature Field Optimization 
 
In order to utilize complex optimization 
algorithms, as well as complex control 
algorithms, the Matlab interface is facilitated 
through creation of the Comsol model as a 
Model-m file. 
In order to optimize the continuous pulse shape 
I(t), defining the current distribution as a 
function of time during the induction heating 
process, we have to implement a search 
algorithm which minimizes a cost function opt 
such that 

( ( )) ( ( ))opt optoptI t min I t       (21) 
where Iopt is the resulting optimal pulse shape 
after the completion of the search algorithm. 
For the given case only a discretized pulse shape 
is feasible and thus the discretized pulse I[m] is 
given through a sampling of I(t) at a sampling 
rate 1/T, with T being the sampling interval, 
and m=0,1,...,M being the sample number 
corresponding to the sampling time 
tsample,m=m·T. The vector is handed over to the 
Model m-file by the optimization routine, 
describing the current iteration step k for the 
induction current Ik and is consecutively 



 
Figure 2. Optimization of heating strategy for the 
evolution of the billet core and surface temperature in 
order to reach a uniform pre-heating to 700 K, as 
depicted in fig. 1. 
 
converted to the appropriate Comsol m-file 
string through the function num2str(Ik(m)) 
and the model is solved for a predefined time 
interval utilizing the current iteration step. In 
order to yield full non-linearity of the underlying 
model over a large temperature interval the 
solution of the next time interval step Ik[m+1] of 
the optimization vector is initialized utilizing the 
solution of the previous interval Ik[m] by 
leveraging the command lines  
 

fem1.sol = asseminit(femmodel, 

'init',femmodel.sol); 

fem.sol=femtime(fem,'init',fem1.

sol, ... ,[…]); 

 

with fem1.sol being the solution object of 
the previous iteration saved as a the initial 
starting point for the next time interval. This 
routine is repeated until the end of the desired 
simulation time. 

A thorough investigation and description of the 
utilized model and optimization algorithms as 
well as analyses regarding model verification can 
be found in [11]. 
 
4. Controller Implementation  
 
The given control problem is rather convoluted 
due to the fact that, as emphasized in the coupled 
differential equations describing the underlying 
thermo-mechanical effects, a strong non-linear 
temperature dependence of energy influx impacts 
the required controller output. This embraces 
both boundary conditions as convection and 
ration as well as internal effects as penetration 
depth or heat transfer coefficient. Therefore, the 
given system experiences a highly dynamic 
behavior within a single heating cycle, which 
needs to be considered in the control algorithm. 
Conventional control algorithms, as PID 
controllers, were disqualified through 
simulations with COMSOL, as a fine-tuning of 
controller parameters kp, ki, and kd for the PID 
controller is required for every new set-point, 
material as well as coil geometry. As a result, a 
fuzzy controller was implemented utilizing fuzzy 
membership functions based on the absolute 
error and the temporal derivative of the error and 
a geometric distribution of skewed triangular 
membership functions. The max and min T norm 
were chosen as possible fuzzy inference methods 
and a center of gravity (COG) or center of area 
(COA) defuzzification strategy was leveraged. 
The initial rule base is a zero matrix, with no a 
priori information regarding the process and 
online adaptation is based on a weighted steepest 
gradient descend optimization algorithm, directly 
adapting the previously active rules with respect 
to the degree of activation. 
The implementation of the controller strategy is 
based upon a similar approach as outlined for the 
implementation of complex optimizations 
algorithms. Thus, no linearization of the 
underlying differential equations is necessary 
and pertinent impact parameters for the control 
algorithm can be optimized using the simulation 
model, rendering the time consuming controller 
tuning utilizing the actual induction facility 
obsolete and leading to a significant reduction of 
controller development and implementation 
time.



 
Figure 3. 9th and 10th run of the self learning fuzzy 
algorithm for a cycle time of 20ms and set point of 
1200 K. The concatenation of simulation results was 
performed in order to enhance readability. 
 
5. Results 
 
The controller model as outlined in the previous 
section enables the rapid prototyping of our 
controller with respect to all pertinent controller 
parameters, being the determination of the 
admissible cycle time of the programmable logic 
controller (PLC) as well as distribution of error 
and error derivative membership functions or 
learning factor in rulebase adaption and 
defuzzification strategy considering the limiting 
factor that arises through the PLC being the 
cycle time and therefore the sampling interval of 
both temperature measurements and induction 
power adaption through the controller. 
Automated control trials with the aforementioned 
Comsol model yielded the min T norm as the 
optimal fuzzy inference method, as this approach 
yields a higher stability in the vicinity of the set-
point, and a COG defuzzification strategy. 
Figures 3 through 5 exemplarily depict the 
influence of the cycle time on the controller 
performance. As expected low cycle times (20-
50ms) are preferable to high cycle times 
(>100ms). Moreover, one can derive that a small 
number of repetition steps for the self-adapting 
controller are sufficient in order to obtain an 
adequate accuracy regarding the desired set-point 
for the given thermo-mechanical process. 

 
Figure 4. 4th and 5th run of the self learning fuzzy 
algorithm for a cycle time of 50ms and set point of 
1200 K. The concatenation of simulation results was 
performed in order to enhance readability. 
 

 
Figure 5. 4th and 5th run of the self learning fuzzy 
algorithm for a cycle time of 250ms and set point of 
1200 K. The concatenation of simulation results was 
performed in order to enhance readability. 
 
The implementation of the controller on a PLC 
of the company B&R Automation, Eggelsberg 
(Austria), was performed in the programming 
language C and the pertinent control parameters 
for the spacing of membership functions, cycle 
time, and defuzzification strategy were directly 
transferred into the PLC code as optimized 
through the COMSOL induction control model. 



 
Figure 6. 5th run of the self learning fuzzy algorithm 
for a cycle time of 52ms and set point of 1473 K 
measured with a type K thermocouple connected to 
the PLC.  
 
Results are depicted in fig. 6 showing the fifth 
self-optimization step of the implemented C code 
for a PLC cycle time of 52ms and measured with 
a type K thermocouple applied to the billet 
surface. The achieved maximum error is in the 
order of 8 K and therefore within the thermo-
couple error margin being 9 K at T=1500 K. 
 
6. Conclusions and Future Work 
 
By utilizing the commercially available software 
COMSOL an electro-magnetic-thermo-
mechanical and highly non-linear simulation 
model could be obtained allowing the 
implementation of both complex optimization 
routines as well as self-adjusting controller 
routines though the Matlab interface without the 
need for linearization of the underlying coupled 
differential equations. The optimization of 
pertinent controller parameters using the 
simulation model enabled a rapid control 
prototyping and, therefore, a significant 
reduction of controller implementation time into 
the PLC, which merely embraced a translation of 
the Matlab code to the programming language C. 
Future work will embrace an extension of the 
given self-adjusting controller in order to yield 
the capability of achieving complex temporally 
and spatially varying temperature profiles as 
given in fig. 1 and fig. 2 independent of the billet 
material. 
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