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Abstract: We show how the equation-based mod-
eling feature in Comsol Multiphysics can be
used to perform mathematics-based optimization.
We show how mathematics can be used to deter-
mine conditions for optima of problems that are
described and solved by Comsol Multiphysics.
The approach that we present here is to derive
an equation-based model for gradients or sensitiv-
ities for the considered application, and use Com-
sol Multiphysics again to compute them. This
method has been used in an abstract setting in
the mathematical optimal control and optimization
community for several example problems and ap-
plication ranging from heat equation to fluid me-
chanical problems described by the Navier-Stokes
equations. We give an impression how the method
can be used and how efficient it can be. Moreover
we show are non-differentiable control-constrained
problems can be smoothed to apply Comsol Mul-
tiphysics’s built-in Newton solver.

1 Introduction

Simulations now play an important role in scientific
and engineering sciences, since they allow for faster
and cheaper prototyping compared, e.g., to exper-
iments. However, in many applications the overall
goal is not just to simulate a given process or prob-
lem, but to obtain an optimal solution, optimal pa-
rameters or an optimal design or geometry.

While the engineer’s and scientist’s knowledge
is crucial at this point, still numerical algorithms
can be a helpful tool in optimization or design, too.
There are many algorithms suitable and applica-
ble when optimizing an already discretized formu-
lation of a scientific problem. Since those prob-
lems are mostly given as partial differential equa-
tions (PDEs), their discrete counterparts can be
formulated and solved by modern simulation soft-
ware. One example for such kind of software is
Comsol Multiphysics

®
, which is based on the

finite element method and solves the generated dis-
crete systems by a variant of Newton’s method
(in the interesting and most challenging nonlin-
ear case). Comsol Multiphysics even supplies
an optimization routine which can be used to per-
form the above mentioned optimization tasks for
finitely many real-valued parameters representing
material coefficients, initial or boundary values or
the model geometry, depending on the desired op-
timization parameter. This process of first dis-

cretizing the problem (e.g. by the finite element
method) and then solving an optimization problem
with finitely many parameters is sometimes called
the first-discretize-then-optimize approach.

On the other hand, in the mathematical commu-
nity of optimal control methods are developed study
optimization problems in a very abstract mathe-
matical setting in function spaces, see among oth-
ers [7, 9, 15] for an overview. As for real-valued
functions, then conditions (comparable to the well-
known conditions f ′(x) = 0 or gradf(x) = 0)
that characterize optimal solutions are stated and
proved. These conditions are called optimality sys-
tems and are PDEs again. The contains the orig-
inal equation (which is then called state equation)
and a second equation called adjoint equation for a
second quantity, the so-called adjoint state. With
the help of the adjoint state the optimal control or
parameters can be characterized.

Since the optimality system is a PDE (system)
again, it can be afterwards discretized and solved
by appropriate software, and consequently Com-
sol Multiphysics can be used to apply the finite
element method again. Following this approach is
sometimes called first optimize then discretize.

In this paper we want to give an example for
this approach using Comsol Multiphysics. We
study an parabolic control problem with additional
bound constraints on the parameters.

For parabolic, i.e., time-dependent PDEs, the
optimality system contains a forward and a
backward-in-time equation which are coupled by an
algebraic equation. To solve this system, iterative
algorithms are in use. Another approach is to solve
both equations at once, i.e. as a huge system of
coupled equations, cf. for example [12]. This ap-
proach is also used here. that means the optimality
system is solved as one system of elliptic PDEs in-
cluding the use of (optionally adaptive) space-time
meshes. The method is justified by an equivalence
result stated in [11], where also detailed proofs of
the underlying mathematical theory can be found.

Problems with bound or box constraints on the
control variables or parameters are mathematically
challenging, since in this case the resulting optimal-
ity system becomes non-differentiable. More pre-
cise, a non-differentiable projection operator addi-
tionally occurs in the coupling equation between ad-
joint state and control. The resulting non-smooth
system can be solved e.g. by semi-smooth New-
ton methods, cf. for example [5, 7, 8]. Moreover,
beginning in the late 1990s, the concept of smooth-



ing functions was studied in various papers, see e.g.
[2]. Here we show how a so-called regularized, i.e.
smoothed formulation of the optimality system can
be obtained and solved. Here we some additional
features of Comsol Multiphysics that provides
e.g. a smoothed signumfunction. The idea for this
regularization came from a formal transformation
of the optimality system of the (constrained or un-
constrained) control problems: Treating both space
and time similarly, it becomes a biharmonic bound-
ary value problem whose weak form involves an el-
liptic bilinear form. This method was also used in
[1] and is described in detail in [11]. The transfor-
mation involves expressing the control by the ad-
joint state, as in [6]. Biharmonic equations (with re-
spect only to spatial variables) are well-known from
elasticity problems and can be solved by e. g. finite
elements, see e. g. [4, 13].

Comsol Multiphysics allows to write the non-
differentiable projection formula occurring in con-
strained problems symbolically as a combination of
minimum and maximum functions. These terms
and the whole PDE are differentiated symbolically
rather than numerically when nonlinear solvers are
applied. Moreover the smoothed, regularized pro-
jection formula presented here can also easily be
implemented using built-in functions. We point out
the work in [10], where we focused on the implemen-
tation issues of the proposed approach.

This paper is organized as follows: After the
introduction into the problem class in Section 2,
we briefly state the known results of existence and
uniqueness of the equations that are crucial for a
mathematical analysis. Then we state the optimal-
ity system for unconstrained and constrained prob-
lems and show how a smoothed version can be ob-
tained. We discuss the justification of this approach
by stating a convergence result. Finally we present
a numerical example illustrating our approach.

2 Problem formulation
In this section we present a model example which
is used to illustrate our approach. It is a typical
distributed optimization or control problem for a
linear time-dependent parabolic PDE.

Let Ω be a bounded subset of RN (N = 1, 2)
with smooth boundary Γ, and let the time interval
be given as [0, T ].

We consider the optimal control problem (P)
with a tracking type objective functional

J(y, u) =
1
2

∫
Q

(y − yd)2 + κ(u− ud)2 dxdt

subject to the PDE (state equation) in weak form,
with distributed control u,

yt −∆y + c0y = u in Q := Ω× (0, T )
~n · ∇y = g on Σ := Γ× (0, T )
y(x, 0) = y0 on Ω.


(2.1)

Here yd, ud, c0, y0, g are given data, κ > 0 is a reg-
ularization parameter, and ~n · ∇y stands for the
outward normal derivative of y. The necessary as-
sumptions on the data will be given later on. To
simplify the theory, let c0 > 0 be a real number.

Moreover we will consider a second control prob-
lem (Pcon) where additional control constraints of
linear type,

ua(x, t) ≤ u(x, t) ≤ ub(x, t) in Q (2.2)

with ua(x, t) < ub(x, t) in Q, are imposed.

3 Existence and uniqueness of
weak solutions

Since Comsol Multiphysics uses discretized
weak formulations in the Finite Element method,
we now recall those for our model problem. These
are obtained by multiplying the PDE by test func-
tions (denoted below by w), integrating over the
domain (in our case the space-rime domain Q), and
then optionally perform an integration by parts.
The resulting integral equations can be solved under
weaker differentiability assumptions. In this subsec-
tion we briefly summarize the known results on exis-
tence, uniqueness and regularity of the PDE. This
rigorous analysis is the basis of our mathematical
characterization of solutions to the control prob-
lem and thus also for our solution approach based
on equation-based modeling in Comsol Multi-
physics.

Just for this analysis, the problem above is
equivalently transformed to a homogeneous one by
setting ỹ := y − yd, ũ := u− ud and considering

min J̃(ỹ, ũ) =
1
2

∫
Q

ỹ2 + κũ2 dxdt.

Additionally, the right-hand side of the equation
will be modified. Since this directly enters the weak
from we give the resulting transformed function f̃
(that replaces f) below. Also the optional control
constraints in (Pcon) are replaced by

ũa ≤ u ≤ ũb a.e. in Q (3.1)

for ũa := ua − ud, ũb := ub − ud.
The following theorem provides the unique weak

solvability of the state equation, and also higher reg-
ularity of the solution. Note that we omit the tildes
here for simplicity, i.e., y refers to y etc.

Theorem 3.1. Assume that Ω ⊂ RN is a bounded
domain with sufficiently smooth boundary Γ. If the
data y0, g and the control and ua re sufficiently
smooth, then the weak solution y of the initial value
problem (2.1) belongs to

H2,1(Q) = L2(0, T ;H1(Ω)) ∩H1(0, T, L2(Ω)).



The weak formulation of the problem can be written
as∫
Q

ytw dxdt+
∫
Q

∇y · ∇w dxdt+ c0

∫
Q

yw dxdt

=
∫
Q

(u+ f)w dxdt ∀w ∈ H1,0(Q), (3.2)

y(x, 0) = 0 in Ω.

Proof. See [15, Theorems 3.9, 3.12, 3.13, Lemma
7.12], and [3], where this has been proven for a
problem with homogeneous Dirichlet boundary con-
ditions. The proof can be adapted to problems
with homogeneous Neumann boundary conditions,
for more details see [11].

4 Characterization of Optimal
Solutions

In this section we state the existence and uniqueness
of solutions to the control problems (P) and (Pcon),
respectively, and present the so-called Optimality
Systems, i.e., characterizations of these optimal so-
lutions. For more detailed information, we refer for
example to [14]. We begin with the existence and
uniqueness result.

Theorem 4.1. For all κ > 0, problems (P) and
(Pcon) have unique solutions in L2(Q), here both
denoted by u∗.

Proof. The proof is given in [15, Thm. 3.15].

The optimality systems that characterize the
unique optimal solutions are the counterparts of the
well-known condition f ′(x) = 0 or gradf(x) = 0 for
optima of a real-valued function f . They are sum-
marized in the following subsections.

Unconstrained Problem

We begin with the unconstrained problem. Note
that they are both necessary and sufficient for op-
timality by the convexity of J .

Theorem 4.2. A control u∗ is the optimal solu-
tion of (P) if and only if the triple (y∗, p, u∗) with
state y∗ and adjoint state p is a weak solution of the
system

y∗t −∆y∗ + c0y
∗ = u∗ + f

−pt −∆p+ c0p = y∗

}
in Q (4.1)

~n · ∇y∗ = 0
~n · ∇p = 0

}
on Σ (4.2)

y∗(x, 0) = 0 in Ω (4.3)
p(x, T ) = 0 in Ω (4.4)
κu∗ + p = 0 in Q. (4.5)

Here we call (y∗, p, u∗) a weak solution if it satisfies
(3.2),(4.5), and

−
∫
Q

ptw dxdt+
∫
Q

∇p · ∇w dxdt+ c0

∫
Q

pw dxdt

=
∫
Q

y∗w dxdt ∀w ∈ H1,0(Q), (4.6)

p(x, T ) = 0 in Ω.

The adjoint state p is uniquely determined.

Proof. See [15, Lemma 3.17 and Theorem 3.21].

The PDE for p is called adjoint equation, and
(4.5) is often referred to as the gradient equation.
It can be used to eliminate the control in the state
equation by setting u∗ = − 1

κp.

Constrained Problem

For the constrained problem (Pcon) we obtain the
following result.

Theorem 4.3. A control u∗ ∈ L2(Q) is the optimal
solution of (Pcon) if and only if the triple (y∗, p, u∗)
with the state y∗ and the adjoint state p is a weak
solution of the same system as in Theorem 4.2 with
(4.5) replaced by

u∗ ∈ Uad := {u ∈ L2(Q) : ua ≤ u ≤ ub in Q},∫
Q

(κu∗ + p)(u− u∗)dxdt ≥ 0 ∀u ∈ Uad. (4.7)

Proof. See [15, Theorem 3.21].

Note that in this case u∗ cannot be replaced by
the adjoint state p in a simple way. Instead, pro-
jection formulas are in use, which we will explain
now.

Optimality conditions in terms of projections

We consider now the homogenized version of the
control constrained problem (Pcon) and replace the
variational inequality (4.7) by the projection for-
mula

u∗ = IP[ua,ub]

{
− 1
κ
p

}
, (4.8)

where for functions a, b, z : Q → R we have used
the point-wise projection

IP[a,b]{z} := π[a(x,t),b(x,t)]{z(x, t)}, (x, t) ∈ Q, (4.9)

with

π[a,b]{z} := min{b,max(a, z)}, a, b, z ∈ R. (4.10)

Then, we can write the optimality conditions for the
constrained problem as (4.1)–(4.4), together with
(4.8) which replaces (4.5), all in weak sense.



A Regularized Projection Formula

In order to avoid the non-differentiable term due to
the min and max function in the projection formula,
we replace the latter by a smoothed one. Since we
may write for a, b ∈ R

max(a, b) =
a+ b+ sign(a− b) · (a− b)

2
,

min(a, b) =
a+ b− sign(a− b) · (a− b)

2

the signum function is the source of non-
differentiability of the max /min functions, a way
around this problem is to replace sign by a smooth
approximation. This is for example the function
flsmsign used in Comsol Multiphysics.

For our theoretic results below we define for
ε > 0 the smoothed sign-function smsign by

smsign(z; ε) :=


−1 z < −ε
P(z) z ∈ [−ε, ε]
1 z > ε

, (4.11)

where P is a polynomial of seventh degree that ful-
fills

P(ε) = 1,P(−ε) = −1,P(k)(±ε) = 0, k = 1, 2,∫ ε

0

P(z)dz = −
∫ 0

−ε
P(z)dz = ε.

This polynomial is explicitly given in [11]. The only
difference to flsmsign is that the latter is defined
as piecewise polynomial of seventh degree, whereas
we define smsign as polynomial on (−ε, ε)). This
difference between flsmsign and smsign will not
change the theory.

For the smoothed signum function defined
above, we can prove (see [11] for details) the fol-
lowing convergence results for ε→ 0.

Lemma 4.4. The smoothed sign-function defined
in (4.11) converges point-wise towards sign:

smsign(z; ε) ε→0−→ sign(z) ∀z ∈ R

and in all Lq-norms with 1 ≤ q <∞, i.e.,

lim
ε→0

(∫
R
|smsign(z, ε)− sign(z)|qdz

)1/q

= 0.

Based on the smoothed signum function, we
can now for arbitrary ε > 0 define smoothed
max(ε),min(ε) functions (replacing the signum func-
tion by smsign with parameter ε). Furthermore, we
replace the projections π and IP defined in (4.10)
and (4.9) by their corresponding smoothed coun-
terparts π(ε) and IP(ε). Since we want to use the
projection IP(ε) in the optimality system, we prove
in [11] the following convergence result.

Theorem 4.5. Let a, b ∈ L∞(Q) be given func-
tions. The smoothed projection IP(ε)

[a,b] converges to-
wards IP[a,b] in all Lp-norms with 1 ≤ p < ∞ as
ε→ 0 .

Moreover, in [11] it is shown that the solution to
the regularized problem (i.e., the one where the pro-
jection IP is replaced by its smoothed counterpart
π(ε)), converges to the solution of the unregularized
one, i.e., original problem.

Theorem 4.6. For ε → 0 the corresponding se-
quence of regularized optimal controls {uε}, where

uε := IP(ε)
[ua,ub]

{
− 1
κ
pε
}

and pε denotes the adjoint state of the regularized
problem, converges to u∗.

This result justifies the use of the smoothed ver-
sion of the problem. Concluding, we point out
that the proposed regularization avoids the pres-
ence of non-differentiable terms in the optimality
system associated with optimal control problems
with bounds on the control. The regularized prob-
lems admit unique solutions that converge to the
unregularized ones for vanishing regularization pa-
rameters.

5 Numerical experiments

As example we consider

min J(y, u) =
1
2

∫
Q

(y − yd)2 + κ(u− ud)2dxdt

while (y, u) fulfills the parabolic PDE

yt(x, t)−∆y(x, t) = u(x, t) in Q
~n · ∇y(x, t) = 0 on Σ

y(x, 0) = 0 on Ω.

and the constraints on the control −1 ≤ u ≤ 1.5 in
Q = (0, π) × (0, π). The desired state is given by
yd = sin(x) sin(t) and the control shift ud vanishes
identically. We set κ = 10−3. The optimal solution
of this problem is unknown.

The presence of nontrivial data yd, ud, y0, and g
slightly changes the optimality systems previously
derived in Section 2 when considering the inhomo-
geneous problem formulation for the theoretical re-
sults. Details are given in [11]. we do not mention
hem here; we only want to show that our approach
is working.

For our computations, we choose Comsol Mul-
tiphysics, where we are mainly interested in using
some of the programs build-in tools like adaptiv-
ity and multigrid solvers. We computed the so-
lutions on a space-time-mesh. Comsol Multi-
physics does provide a smoothed signum function
flsmsign that is very similar to our choice. Note
again that the only difference is that in the specifi-
cation of flsmsign it is defined as piecewise poly-
nomial of seventh degree, whereas we define smsign
as polynomial on (−ε, ε)). Once again we state that



this difference does not affect our mathematical the-
ory sketched above.

Comsol Multiphysics by default uses the
smoothed min/max functions but without user-
control of the smoothing parameter ε. In our com-
putations we use our smoothed projection formula
and therein flsmsign, where the parameter ε re-
mains in the hands of the user. For details on the
implementation of optimality systems in COMSOL
Multiphysics we refer to [10]. Note, however, that
the described approach is not limited to special soft-
ware.

Uniformly Refined Meshes

We solve the example first by the femnlin solver on
uniformly refined meshes, starting from the coars-
est one in Comsol Multiphysics. The smoothing
parameter was ε = 10−4.

From Table 1 we observe that the solution pro-
cess converges for all meshes. The number of New-
ton iterations seems to be mesh nearly independent,
and convergence of state and control with respect
to the grid size h can be seen.

#pts #it ‖yh − yd‖ ‖uh‖ J(y, u)

0 61 7 0.18416 2.9992 0.021456

1 221 8 0.18152 3.0184 0.02103

2 841 8 0.18128 3.0223 0.020999

3 3281 8 0.18124 3.0238 0.020996

4 12961 8 0.18123 3.0243 0.020996

5 51521 12 0.18123 3.0244 0.020996

Table 1: Results for uniformly refined mesh. First
column is the number of refinements, second the
number of grid points, and third the number of
needed iterations to converge.

Adaptively Refined mesh

Here we use the adaptive solver on the initial mesh
of the computation above. We control the number
of new grids created by the error controller of the
adaptive solver. The values state, control and cost
function in Table 2 are comparable with the results
above for the uniformly refined mesh.

#pts #it ‖yh − yd‖ ‖uh‖ J(yh, uh)

1 139 13 0.1818 3.0115 0.02106

2 311 15 0.18147 3.0185 0.021021

3 725 16 0.1813 3.0218 0.021001

4 1661 17 0.18126 3.0232 0.020997

5 3867 18 0.18124 3.0240 0.020996

6 8884 19 0.18124 3.0242 0.020996

Table 2: Adaptively refined mesh. First column is
the number of generation in the adaptive refinement
process, second and third column as above.

Convergence of the Smoothed Solutions

Having the convergence proof for the regularized
problems, we compare solutions computed by the
regularized projection with solutions computed by
Comsol Multiphysics’s built-in min/max func-
tions.

Table 3 numerically shows the convergence of
state, control and adjoint state while the regular-
ization parameter ε going to zero. Figure 1 visual-
izes the values presented in Table 3 and shows the
convergence with respect to ε.

ε
‖yε − y∗‖
‖y∗‖

‖uε − u∗‖
‖u∗‖

‖pε − p∗‖
‖p∗‖

1e-0 4.4400e-04 1.6626e-02 2.9988e-03

1e-1 5.5765e-06 1.1005e-04 1.8942e-05

1e-2 1.1685e-07 1.3176e-06 3.5138e-07

1e-3 4.1875e-09 6.8397e-08 1.2940e-08

1e-4 1.8675e-11 2.3611e-10 6.9580e-11

1e-5 6.9621e-17 4.1289e-16 3.2053e-16

Table 3: Relative error between the solutions com-
puted by the regularized projection formula (indi-
cated by ε) and Comsol Multiphysics’s min/max
functions (indicated by an asterix).
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Figure 1: Relative difference between the solutions
computed by the regularized projection formula.
Both axis are scaled logarithmically.
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