

Numerical Modelling of the Damage Potential of Indoor Climate Variations to a Historic Wooden Cabinet

Z. Huijbregts A.W.M. van Schijndel H.L. Schellen

Technische Universiteit
Eindhoven
University of Technology

Where innovation starts

Introduction

Museum objects

Risks of biological, chemical and mechanical degradation due to wrong indoor climate conditions

Prediction of mechanical stress related to climate variations

- Analysis of hygroscopic and mechanical behaviour of objects
- Definition of tolerable fluctuations of relative humidity

Panel painting: Mecklenburg et al. (1998) Lacquer Box: Bratasz et al. (2009) Wooden Statue: Kozlowski (2007)

Graphical representation: Martens (2011)

Case study

Van Mekeren Cabinet

- Situated in Grand Salon, Amerongen Castle, The Netherlands
- Created by Jan van Mekeren around 1690-1710

Objectives

- To analyse the response time of a door panel to a sudden relative humidity increase
- To analyse the microclimate conditions around the cabinet as a results of the indoor climate conditions in the Grand Salon
- To predict deformation of a door panel due to climate variations
- → Validation with on-site measurements

COMSOL modelling

- Heat transfer in solids and fluids module
- Structural mechanics module

3D model of door panel

COMSOL modelling

Heat and moisture transport

$$\rho c_p \frac{\partial T}{\partial t} = \nabla (k \nabla T)$$

$$\frac{\partial Pv}{\partial t} = \nabla (D(Pv)\nabla Pv)$$

```
ho = density [kg/m³]

c_p = specific heat capacity [J/kgK]

T = temperature [°C]

K = thermal conductivity [W/mK]

Pv = vapour pressure [Pa]

D(P) = moisture diffusion coefficient [m²/s]
```

COMSOL modelling

Stress and strain

$$\begin{pmatrix} \varepsilon_{x} \\ \varepsilon_{y} \\ \gamma_{xy} \end{pmatrix} = \begin{pmatrix} \frac{1}{E_{x}} & -\frac{v_{xy}}{E_{Y}} & 0 \\ -\frac{v_{yx}}{E_{x}} & \frac{1}{E_{y}} & 0 \\ 0 & 0 & \frac{1}{G_{xy}} \end{pmatrix} \begin{pmatrix} \sigma_{x} \\ \sigma_{y} \\ \tau_{xy} \end{pmatrix} + \begin{pmatrix} \alpha_{x} \\ \alpha_{y} \\ 0 \end{pmatrix} \Delta\theta + \begin{pmatrix} \kappa_{x} \\ \kappa_{y} \\ 0 \end{pmatrix} \Delta w$$

```
\begin{array}{lll} \epsilon_x \epsilon_y & = & \text{normal strain components [-]} \\ \gamma_{xy} & = & \text{shear strain component associated with two axis [-]} \\ v_{xy}, v_{yx} & = & \text{Poisson's ratio [-]} \\ E_x, E_y & = & \text{Young's moduli [N/m²]} \\ G_{xy} & = & \text{shear modulus [N/m²]} \\ \alpha_x, \alpha_y & = & \text{linear thermal expansivity [m/mK]} \\ \theta & = & \text{temperature [°C]} \\ \kappa_x, \kappa_y & = & \text{linear deformation due to changes in moisture content [m/m(kg/m³)]} \\ w & = & \text{moisture content [kg/m³]} \end{array}
```

Response time

Test chamber experiment

- Sudden relative humidity increase from 50% to 70%
- Temperature is maintained constant at 20°C

Technische Universiteit **Eindhoven** University of Technology

Microclimate conditions

On-site measurements of temperature and relative humidity in Grand Salon and inside cabinet

 Comparison between measured and simulated microclimate conditions in COMSOL

Deformation

Predicted displacement during 10 days

Internal side: microclimate conditions cabinet

Time=0 Surface: Total displacement Total displacement (m)

Deformation

Predicted deformation at external side t =1000

Deformation

Predicted deformation at internal side t=1000

Conclusions

- Response time of door panel is adequately predicted
- Modelling of microclimate conditions requires improvement
- Agreement is found between predicted deformation and visible damage
- More detailled measurements of hygroscopic and mechanical properties of the various wood types in the cabinet are necessary to calculate stress and strain in the cabinet as a result of climate variations

Thank you for your attention

Technische Universiteit
Eindhoven
University of Technology

Where innovation starts