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Abstract: In this work a model that predicts
velocity and concentration fields inside an X-
shaped millichannel (4 mm diameter) is
developed. Water and a low concentration ink
are injected simultaneously in the two inlets of
the device. The mass transfer problem is solved
by a Fickian model (solute concentration is low
compared with the solvent). The key idea is to
understand the role of diffusion and the velocity
field in the flow mixture. The numerical results
are compared with the experimental ones.
Keywords: porous media, millichannel, pasive
millimixer, diffusion.

1. Introduction

The aim of this paper is to study,
experimentally nd numerically, millimeter flows
that simulate flow patterns in a pore of a porous
medium. The millichannels and cavities studied
in this work will allow exploring and quantifying
the importance of the various types of
interactions: diffusion, geometric scattering,
effect of the wall roughness, etc. The porous
media are present in many branches of science
and technology such as oil recovery from
petroleum reservoirs, pharmaceutical industry,
geology, biology, etc. One of the effects of the
porous media on flows, is to produce dispersion,
due to the different paths to travel inside the
matrix, even at low Reynolds numbers [1,2]. For
this reason, in many applications, it is possible to
consider the porous media as a system of highly
interconnected  capillaries networks [3,4].
Usually, the behavior of a porous media is
studied on a macroscopic scale, i.e. at the
complete medium level. However, the study
presented here proposes an analysis starting from
the microscopic scale (pore-level), through the
study of mixing properties depending on the
geometry.

As a first step, we induce millimeter
interactions by intersecting channels, in order to
characterize the geometric problem and to
identify the relevant parameters.

In particular, we study two cross-
millichannels with two inlets and two outlets. By
injecting a colored dispersion in one of the inlets
and distilled water in the other, we compared the
outlet concentrations from experimental and
numerical models. In order to improve our
understanding of the problem and to perform
parameter variations in future phases of this
work, the problem has been modeled in
COMSOL 3.5.

2. Experiments

With the aim of study the properties of the
mixing millimeter channels, we designed an
experiment with two circular acrylic 4 mm
internal diameter channels that intersect at an
angle of 90 degrees. In one of the channels, a
methylene blue ink (a water-based ink) at low
concentration (¢ = 1 mol/m’) is injected. The ink
diffusion coefficient’ is D = 6.5e-10 m?/s. In the
second channel, distilled water (¢ = 0 mol/m®) is
injected. The flow Q through both channels can
be varied. The comparison between numerical
simulations and experiments has been done for
Q = 0.006 1/min. The channels were made of
transparent material to visualize the ink
concentration distribution with an optical system
specially prepared for this purpose.

3. Use of COMSOL Multiphysics
3.1 Model overview

The fluid flow is described by the laminar
steady-state ~ Navier-Stokes and continuity

equations:

paa—Z:—V~77(Vu+(Vu)T)+p(u~V)u+Vp=0 (1]

V-u=0 [2]


http://www.comsol.com/conf_cd_2011_eu

where p represents the density (kg/m’), u the
velocity (m/s), n| the viscosity (N.s/m?) and p the
pressure (Pa). The considered fluid is water with
amn=1le-3 N.s/m*and p = le3 kg/m’.

The mass balance equation is given by the
convection-diffusion application mode and the
equation to solve is:

% =-V-(-DVe)—uVc=0 (3]

where D represents the diffusion coefficient and
¢ gives the ink concentration. The boundary
conditions at the inlets are ¢ = 1 mol/m® and ¢ =
0 mol/m®. Due to this concentration value, we
work with a low concentration system. This
means that the solute molecules only interact
with water molecules (without interacting with
themselves) and thus, it is possible to use Fick'
law to describe the diffusion process. Also, we
assume that the concentration employed does not
modify the density or viscosity of the water.
Under these assumptions, it is legitimate to first
solve the Navier-Stokes equations at steady state
and then use its solution as a base flow to solve
the non steady convection-diffusion equation.

3.3 Geometry

The 3D geometry used is shown in figure 1. The
length of the channels is 1 cm. In order to
simplify the simulation and exploiting the
symmetry of the problem, we have studied only
one of the horizontal planes.

Figure 1: Sketch of the 3D geometry

For meshing geometry, we have used tetrahedral
elements with different size at each interest
volume. The maximum elements size are 5e-4 m
at the intersection volume and 8e-4 m at the
outlets channels. The inlet volumes have the
default size (figure 2).

Figure 2: Sketch of the size elements in each interest
volumes.

In total, we have a mesh of about 10600 finite
elements, which corresponds to approximately
68100 degrees of freedom. As solver we have
chosen the direct PARDISO. For the diffusion
equations, different stabilization options has
been tested since solutions not always were
converged or were unstable ones.

3.2 Boundary conditions
At the inlets, the model assumes laminar

fully developed flow. A parabolic velocity
profile with a constant mass flow has been set



up. In the case of our study Q = 0.006 1/min has
been used.

At the outlet, the pressure is set at 0 Pa. At
the other boundaries, which are the external
limits of the fluid, a non-slip condition is
employed. Boundaries from the center horizontal
plane are symmetry boundary.

3.4 Parameters

In the next table, parameters are indicated:

Flow inlet boundary #21 0.006 I/min
Flow inlet boundary #33 0.006 I/min
Concentration inlet #21 1 mol/m’
Concentration inlet #33 0 mol/m®

4. Model results
4.1 Hidrodynamic Model

The Reynolds number has been checked to be in
the laminar regime in order to ensure that a
laminar steady-state assumption is correct to
study the present problem (Re = 40 in the
simulated case).

The Navier-Stokes equations were solved, and
figures 3 and 4 show the results of the velocity
field.

Figure 3: Modulus of the velocity vector.

Figure 4: Streamlines

Related to the flow distribution, figure 3 shows
that in the case with the same flow rate at two
inlets, the flow is symmetric with respect to a
bisecting plane, that is not crossed by the
streamlines, as shown in figure 4.

Notice that the velocity is increased from 0.01
m/s at the inlet pipes to 0.0139 m/s at the central
zone. The increments of the velocity corresponds
to a section narrowing that occurs in the central
zone. Effectively, the ratio between these two
velocities is about 0,7 which is the ratio between
the cross section of the inlet pipes and the ellipse
at the bisecting plane.

4.2 Diffusion process

A brief preliminary study was conducted in order
to explore some of the diffusion parameters
available in COMSOL. By using the stationary
solutions of the Navier-Sokes equations as a base
state, we have studied the transient diffusion
starting at the moment the ink enters the
corresponding boundary (¢ = 1 mol/m3,
boundary #21) until ¢(7,¢) reaches a stationary
solution.

In order to detect when the stationary state for ¢
is reached, not only the evolution of ¢ along the
channels but also the mean concentration ¢ at
the exits are monitored, which is defined as

Eizi”c dA [4]
A

Here A is the cross sectional area at the exit and
the sub-index i stands for the exit boundaries, #1
or #10 (see figure 1). The quantity ¢ is a useful



control parameter, because the theory predicts
that for D—0, ¢, — lmol / m’ and
¢, = Omol/m*. On the other hand, when

D—eo, ¢ =¢,) — 0.5mol /m’.

Thus, these two limits will be important to
evaluate the reliability of the numerical
solutions.

Before showing the results of this section, we
briefly describe the diffusion parameters [5].
Isotropic Diffusion. With this option, COMSOL
adds a new term to the physical diffusion
coefficient. The effect of isotropic diffusion is to
damp oscillations and also avoid their
propagation [5]. The tuning parameter, &,
controls the amount of the isotropic diffusion
and should be as low as possible, usually lower
than 0.5.

Streamline Diffusion. Streamline Diffusion is a
direct refinement of the isotropic diffusion
method described above. The main difference
with the Isotropic Diffusion is that the
Streamline Diffusion adds diffusion only in the
streamline direction. Again, the value of the
streamline diffusion, 8,4, should be kept as low as
possible (the default value is 0.25). COMSOL
offers three different methods to introduce this
diffusion: the Anisotropic Diffusion (AD), the
Streamline upwind Petrov- Galerkin (SUGP), the
Galerkin least-squares (GLS). In general, it is
generally accepted that SUGP does not increase
the stability as much as AD or even GLS, but
yields higher accuracy and lower computational
times.

Crosswind Diffusion. Crosswind Diffusion
adds artificial diffusion in the orthogonal
direction to the streamlines. For problems that do
not involve sharp gradients, the streamline
diffusion is often enough to get smooth
solutions. In cases were sharp gradients occurs,
the Crosswind Diffusion is the natural option to
reduce spurious oscillations.

In our problem, when no artificial diffusion is
employed, the stationary solution is not reached
even in the cases we impose the time strict
option. At the end of each run, ¢ is almost
constant in the whole domain and in some points
close to the corners it has no physical sense
(negative values and/or higher than 10" mol/m®).
Figure 5 shows the evolution of ¢, for D=10"

"m?%/s obtained by using the different diffusion

options. For such a small value of D, ¢ must

reach the value 1 mol/m’ in stationary regime. In
our problem, we have found that the fastest and
more realistic solution was obtained by using
isotropic diffusion with 8,;=0.05. Effectively,
Figure 5 shows that isotropic diffusion reaches a
stationary solution at t=10. The use of the
streamline  diffusion  (artificial  diffusion)
approximates to the same asymptotic value we
obtain for isotropic diffusion. Other choices,
such as crosswind diffusion, do not result in
stationary solutions.

Figure 5: Mean concentration at the exit 1, ¢, as a

function of time for different diffusion options. Here,
D=10"" m%s, §,,=0.05 and Q=0.006 l/min.

Based on these results, we adopted the isotropic
diffusion, and all of the results shown here
correspond to 0;;=0.05. Figure 6 shows the
evolution of ¢ until time ¢=/0s, when the
solution become stationary (the evolution was
continued until /=20s to monitor the stability of
the solution). Notice that at t=10s, a small
amount of ink is diffused to the exit #10 and,
thus, the concentration of the ink at the boundary
#1 is lower than 1 mol/m’.



Figure 6: Snapshots of ¢ for t=0.5,1,3 and 10 seconds.
At t=10 seconds the solution is steady and identical to
the profile =20 seconds (not shown here for brevity).
Here, D=10"" m*/s, §,;=0.05 and Q=0.006 I/min.

Figure 7 shows the dependence of ¢ and ¢, as a

function of time for D = 10" m2/s. The
asymptotic values for these two quantities are
slightly shifted from the theoretical ones, but the
error is negligible, about 5%.

We checked that, after the steady state is
reached, the sum of both quantities is equal to 1
mol/m’, as required for conservation of mass.

Figure 7: Evolution of the concentration at the exits
(boundaries 1 and 10). Here, D=10""" m?s, 3,:=0.05
and Q=0.006 1/min.

Figure 8 shows the concentration at both exits as
a function of D, after the stationary state was
reached. We observe that the limits for D —0

are  ¢,,¢,, — 0.934,0.065mol / m®> instead of

¢,,C,y = 1,0mol/m’. On the other side, the




numerical limits for D— oo are
C,,Cyo = 0.521,478mol / m’instead  of  the

expected values¢, =¢,, — 0.5mol /m” .

Interestingly, reducing the isotropic diffusion to
8,¢=0.03, makes the limits to better approach to
the theoretical values (see Figure 8).
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Figure 8: Mean concentration at the exits (boundaries
1 and 10) as a function of D. The isotropic diffusion
corresponds to §,;=0.05 (open symbols). The two
filled symbols are for 8,4 =0.03. Here, Q=0.006 I/min.

5. Results Analysis

Figure 9 shows the steady state concentration
in an experiments with a cross-millichannel at 90
degrees. Intensity of blue color is an indicator of
ink concentration.
After the inspection of the experimental image,
figure 9, and the numerical simulation, figure 6,
we observe similarities and differences in the
results. On the one hand, both experiments and
simulations predict a small amount of ink
crossing the symmetry plane, the ink traveling in
the outlet #1 close to the adjacent wall (boundary
#12 in figure 9).
On the other side, while experiments do not
show an appreciable difference between the
concentrations of ink at the exit #10 and the
inlet, simulations shows a gradient of
concentration in that channel.

Figure 9: Image of the 90 degrees cross-pipes.
Intensity of color ink represents concentration field.

Nevertheless, the numerical results are, in
general, in good agreement with experiments.
The analysis of figure 9 shows that the
concentrations at the outlets are almost 0 and 1
mol/m’, while simulations predict exit
concentrations to be 0.07 and 0.93 mol/m®. We
observed that these values are not significantly
reduced by reducing D, so we conclude that the
small discrepancy between experiments and
simulations are due to the artificial diffusion.
Effectively, the simulations better approach to
the theoretical values of ¢ for smaller values of
8,¢. Unfortunately, the smallest value that gives
non-oscillatory solutions is 8;4=0.03.

6. Conclusions

A model simulating the hydrodynamics and the
convection-diffusion behaviour of a coloured
dispersion injected in a X millichannel has been
developed in COMSOL Multiphysics.

The model reproduced quantitatively the ratio
between the inlet velocity and maximum velocity
at the central zone. For the diffusion process, the
conservation of mass is satisfied, despite
artificial diffusion was employed in order to
improve the stability and convergence of the
solutions. In conclusion, the numerical
simulations qualitatively mimics the general
behaviour observed in the experiment. However,
we need to reduce artificial diffusion incidence
and to optimise meshing in order to achieve
outlet concentration values in good agreement
with the experimental trials.
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