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Abstract: Waterflooding is widely used in 

secondary oil recovery. The physics is described 

by the model of two-phase flow in porous media. 

The aim of the present work is to implement this 

model in COMSOL and to simulate the process 

of waterflooding. It is analyzed in two 

dimentions. We use layered reservoir in our 

study. And we assume each layer is 

homogeneous and the layers are well 

communicating, which means between adjasent 

layers there exits very fast mass transfer due to 

pressure gradient. Saturation of water and 

pressure are two independent variables in the 

constitutive equations. They are coupled by 

Darcy’s law, which excludes gravity and 

capillary force in our study. The numerical 

implementation is validated, comparing with 

analytical solution based on asymptotic 

derivation, in terms of average saturation profile, 

pseudo-fractional flow and oil revoery rate.  
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1. Introduction 
 

Many oil reservoirs are of layered structure. 

The properties of each layer may often be 

considered to be homogeneous. See Figure 1.  

 

 

Figure 1.  The layered reservoir model. The top and 

bottom of the reservoir are assumed to be 

impermeable.   

Two extreme cases result from the stratified 

reservoir model. The first extreme case is that the 

barriers between layers are absolutely 

impermeable and the crossflow is negligible. 

Alternatively, this is the case when the 

permeability across the layers is much lower than 

that along the layers.  

The second extreme case corresponds to 

perfect communication between the layers, 

where the pressure gradient driving exchange 

between layers may be considered to be 

instantaneous. This case is usually attributed to 

the viscous dominant regime of displacement, 

where viscous forces prevail over capillary and 

gravity forces (see complete asymptotic analysis 

in [1] and [2]). The Dykstra-Parsons upscaling 

method [3] is one of the widely applied 

upscaling methods for the first case. The Hearn-

Kurbanov method (for brevity often termed the 

Hearn method) has been developed for the 

second case ([4]; [5]; [6]). Both methods have 

been designed for manual calculations and 

sacrifice accuracy in favor of simplicity.  

The aim of our work is to simulate 

waterflooding in multi-layer reservoir in two 

dimentions, without the strong assumptions, for 

example  piston-like front. Saturation of water 

and pressure are two independent variables in the 

constitutive equations. They are coupled by 

Darcy’s law, which excludes gravity and 

capillary force in our study. 

 

 

2. Theory 
 

The equations for 2D two-phase flow, 

neglecting gravity and capillary forces in the 

present work, are as follows. The coordinate X is 

along the layers and Y across the layers of the 

reservoir. The mass conservation law for 

incompressible water and oil phases can be 

written in dimensionless form of 
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Here ws , Φ , iU ( YXi ,= ), F represent 

saturation of water, porosity,  dimensionless total 

velocity of oil and water,. fractional flow of 

water.  

Referring to Darcy’s law  
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=  defined as the anisotropy ratio 

of the reservoir, which is dependent on length 

0x , height 
0y , permeabilities

xk , yk  of the 

reservoir. P , iΛ ( YXi ,= ) represent 

dimensionless pressure difference and 

dimensionless mobility, respectively.  

According to the definition of fractional flow 

and mobility, F and iΛ  can be expressed in 

terms of relative permeabilities.  
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Here ),( owkr =αα  is relative permeability. 

iK  is the dimensionless absolute permeabilities.  

In equation (6), because viscosity of water is 

included in dimensional mobilities when we 

derive the dimensionless form of all equations, 

we only need the viscosity ratio of water to oil.  

In this work, we apply the Corey power law 

for relative permeabilities [7].  
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wior ss , are residual oil saturation and initial 

water saturation, respectively. 
owiwor krkr , are 

end point relative permeability of water and oil.  

 

 

3. Use of COMSOL Multiphysics 

 

In COMSOL multiphysics, PDE mode for 

time dependent analysis in the coefficent form is 

used for euqation (1) and PDE time dependent 

mode in general form is used for equation (2). 

Geometry should be 2D.  

Anisotropy ratio E , viscosity ratio 
o

w

µ
µ

, 

dimensionless height of each layer nH  and 

dimensionless total injection rate Q  are defined 

in Contants.  

wior ss , , 
owiwor krkr , , Φ and 

iK are defined 

in Scalar expression, because they may be 

different in different layers. Equations (3)- (7) 

are also implemented in Scalar expression.  

Because this is a discontinuous problem and 

no diffusion is involved in equation (1), artificial 

diffusion is needed then. In our problem,  we set 

the diffusion coefficient c to be 210−
.  

Initial condition for the saturation of water 

ws , i.e. equation (1), should be wiw sts =)( 0 , 

for pressure P , i.e. equation (2), should be an 

arbitrary value. Boundary condition at inlet, for 

ws should be orw ss −=1 , for P  should be 

Qn =Γ⋅−  meaning the injection rate is Q  . 

At outlet, wiw ss = before water breaks through, 

and P  should be arbitrary value smaller than or 

equal to its initial value. If we inject more water 

into the reservoir and water breaks through, then 

we should extend the geometry to make sure at 

the outlet 
wiw ss = . We only analyze the 

domain [ ]1,0∈X . The advantage of using 

dimensionless form for all equations is that all 

parameters have no unit and the domain of 

interest is a unit square. Since the top and bottom 

of reservoir are assumed to be impermeabale, 

boundary conditions there should be 

0=Γ⋅− n  for both equations (1) and (2).  

After the calculation is finished in COMSOL, 

we export the structure and data to Matlab and 



calculate average saturation of water and average 

fractional flow of water in Matlab, as shown in 

Figures 3 and 4.  

 

4. Case study 
 

4.1 2-layer reservoir 

 

The dimensionless parameters applied in this 

case are listed in Table 1.  

 

Table 1  Dimensionless parameters for the two-

layer model. The values in brackets correspond to the 

mobility ratio (oil to water) 33.1=M , other values 

correspond to 33.0=M . (
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Dimensionless 

parameters 

Layer 1 Layer 2 

Fraction of thickness 

H  

0.33 0.67 

Irreducible water 

saturation wis  

0.05 0.2 

Residual oil saturation 

ors  

0.25 0.2 

Relative water 

permeability at residual 

oil saturation workr  

0.8 0.8 

Relative oil 

permeability at 

irreducible water 

saturation 
owikr  

0.8 (0.4) 0.8 (0.4) 

Dimensionless 

permeability in X-

direction XK
 

0.33 0.67 

Dimensionless 

permeability in Y-

direction YK
 

0.33 0.67 

Dimensionless porosity 

Φ  

1 

Viscosity ratio of water 

to oil 
o

w

µ
µ

 

1:3 (1:1.5)
 

Anisotropy ratio E  1000 

Dimensionless 

injection rate Q  

1
 

Figure 2 shows the water saturation in the two 

layers, at the same time but different mobility 

ratios, 33.0=M and 33.1=M .  

 

(a) 

 

(b) 

 
Figure 2. Water saturation profile at time=0.25 p.v.i. 

The X-axis is the dimensionless distance along the 

reservoir, and the Y-axis is the dimensionless height 

(across the reservoir). (a) 0.33M = , (b) 1.33M = .  

 

In Figure 2, we see that when mobility ratio 

of oil to water is larger than 1, the fronts of the 

two layers tend to merge (Figure 2(b)). When 

mobility ratio is smaller than 1, the effect is the 

opposite (Figure 2(a)).  



 
(a) 

 

 
(b) 

 

 
(c) 

Figure 3.  Comparison of the results obtained by 

COMSOL 2D simulation and analytical derivation for 

a reservoir consisting of two communicating layers. 

Solid lines represent the results by analytical 

derivation; dashed lines the results of COMSOL. 

Black and red lines represent the results for an 

unfavorable ( 33.0=M ) and a favorable mobility 

ratio ( 33.1=M ), respectively. (a) average water 

saturation, (b) pseudo-fractional flow, (c) oil recovery.  

 

From Figure 3, we see that the 

implementation in COMSOL Multiphysics gives 

very close results to analytical derivations. Both 

methods proves that at favorable mobility ratio 

cross flow improves oil recovery, while at 

unfavorable mobility raio, cross flow decreases 

oil recovery.  

 

4.2 Log normal distributed permeability 

 

In this section, we consider a special case of 

continuous distribution of permeability, log-

normal distribution. We assume that the 

permeability increases along the height of the 

reservoir.  

The log-normal probability distribution 

density of permeability is given by  
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The relation between k  and the height of the 
reservoir Y  is 
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For normal distribution, Equation (8), the 

integration (Equation (9)) with respect to kln  

from σβ 3−  to σβ 3+  goes up to 0.97. Hence, 

it is reasonable to set the calculation range of 

kln  to be [ ]σβσβ 3,3 +− , and, therefore, the 

calculation range of k  to be 

[ ])3exp(),3exp( σβσβ +− . In our calculation, 

this range is divided into ten equal intervals. The 

value of each interpolation point is substituted 

into Equation (9) to give a ( )kY . The distance 

between two adjacent values of ( )kY  is 

considered as dimensionless height H  of certain 



layer. The parameters of this case are listed in 

Table 2. Other parameters are the same as in 

Table 1. Results are given in Figure 4.  

 

Table 2  Dimensionless parameters for the log-

normal distributed permeability model. The 

values in brackets correspond to the mobility 

ratio 1.33M = , the other values correspond to 

0.33M = . 

 

Dimensionless 

parameters 

Value 

β  ln 5  

σ  0.5 

Irreducible water 

saturation wis  

0.1 

Residual oil saturation 

ors  

0.1 

Relative water 

permeability at residual 

oil saturation 
workr  

0.8 (0.4) 

Relative oil 

permeability at 

irreducible water 

saturation owikr  

0.8 

Dimensionless porosity 

Φ  

1 

Viscosity ratio of water 

to oil 
o

w

µ
µ

 

1:3 (1:1.5)
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Figure 4.  Comparison of the results obtained by 

COMSOL 2D simulation and analytical derivation for 

a reservoir where the permeability is of log-normal 

distribution. Solid lines represent the results by 

analytical derivation; dashed lines the results of 

COMSOL. Black and red lines represent the results 

for an unfavorable ( 33.0=M ) and a favorable 

mobility ratio ( 33.1=M ), respectively. (a) average 

water saturation, (b) pseudo-fractional flow, (c) oil 

recovery.  

 

 

5. Conclusions 
 

This is a complete 2D simulation for 

waterflooding in layered reservoir. We involve 

less assumptions than Hearn’s method. From 



Figures 3-4, we see that the implementation in 

COMSOL Multiphysics gives very close results 

to analytical derivations. Both methods show 

that at favorable mobility ratio cross flow 

improves oil recovery, while at unfavorable 

mobility raio, cross flow decreases oil recovery. 

This is in agreement with the work of El-Khatib 

[8].  

We can change the value of E to get different 

levels of inter-layer communication. When E  

increases, the inter-layer communication 

increases. Gravity and capillary effect can be 

involved in this model easily. The work of 

gravity-dominant regime is going on.  

Because this is a discontinuous problem and 

capillary pressure is not considered here, 

artificial diffusion is needed. In this problem, 

quad mesh is better than triangle mesh.  
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