
Effect of an Iron Yoke of the Field 
Homogeneity in a Superconducting 

Double-Helix Bent Dipole 

Boston, MA – October 7th, 2010 

Dr. Philippe J. Masson, Dr. Rainer Meinke 
Advanced Magnet Lab 

pmasson@magnetlab.com 

                           COMSOL Conference 2010 Boston                                                                                       Presented at the

http://www.comsol.com/conf_cd_2011_us


AML  - Philippe J. Masson – 10/05/2010 Effect of an Iron Yoke of the Field Homogeneity in a Sc. DH Bent Dipole 

• Particle accelerators come in two basic designs, linear (linac) 
and circular (synchrotron, shown below). 

Schematic of a Particle Accelerator 
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DH Combined Function Magnet 
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• Double-Helix™ winding enables the development of combined function magnets 
• Beam with horizontal spread in bent dipole-quadrupole combined function magnet 
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• Particle accelerators require strong dipole fields 

• Field homogeneity is of utmost importance 
– Any higher order fields will distort the beam 

• Double Helix technology allows for perfect control of 
the field multipole content 

• Iron yokes are used to 
– Enhance the field 

– shield the field 

• Iron non-uniform magnetization generate multipole 
order fields that need to be quantified 

• DH magnets are designed to compensate for the field 
distortion stemming from the iron yoke magnetization 

 

 

Introduction 
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Magnet Specifications 

• Aperture 255 mm 

• 10 layers 

• 1.5 mm OD cable 

• Variable Dipole field 

– 2.62 T without iron  

– 3.2 T with iron yoke 

• Axis radius 2 m 

• Operating current 1000 A 
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Iron magnetization will generate multipole components in the 
magnet bore. It is important to quantify them and 
compensate for undesired effects. 

– In order to isolate the effect of the iron yoke, the DH 
winding is models as a perfect source of dipole field 

– The minimum dimension of a non-saturated iron yoke is 
determined  

– The effect of the iron is calculated for current from 100 A 
to the nominal 1000 A 

– At the maximum current the effect of iron saturation is 
investigated through reduction of the iron yoke thickness 

 

 

Objectives 
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• 2D and 2D axial symmetry simulations 

– End effects are neglected 

• Fourier analysis performed with Excel solver 

– Values lower than 1e-6 are considered null 

– Only the first 15 harmonics are considered 

Model Assumptions 
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Geometry, Sources and Boundary Conditions 
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Iron yoke 
B(H) 

Gap/cryostat 

Non-magnetic 
containment 

Magnet winding 
Jz=Jeq*cos(atan(y/x)) 

Reference radius for 
multipole calculation 
R=85.15 mm 

Air 

Infinite area 
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Magnetic Flux Distribution Without Iron 
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Bore field = 2.62 T 
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• Flux density in iron yoke should be lower than 2 T @ 1000 A 

Iron Yoke Dimensions 
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2.06 T peak in iron 
Bore field = 3.85 T 

900 mm 
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• Bore field shows no saturation up to nominal current 

Bore Field vs. Operating Current 
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• The iron yoke creates both a sextupole field up to 0.08% and a decapole 
field up to 0.035% of the dipole field at nominal current. 

Multipole Content vs. Operating Current 
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~2 T in Iron 

~2.3 T in iron 
~3 T in iron 

Effect of Iron Saturation – Flux Density Distribution 
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~3.7 T in iron 
~3.7 T in iron 

~4.9 T in iron 
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• Bore field decreases as iron becomes more saturated 

Effect of Iron Saturation – Bore Field 
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• Iron saturation leads to a sextupole of up to 1.1% and a decapole field of up to 
0.15 % 

• As the field increases in the iron, it becomes more “uniformly” magnetized 
lowering the multipole fields. 

Multipole Content for Saturated Yoke 
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Geometry, Sources and Boundary Conditions 
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Iron yoke 
B(H) 

Gap/cryostat 

Non-magnetic 
containment 

Magnet winding 
Pure dipole source 

Reference radius for 
multipole calculation 
R=85.15 mm 

Air 

Infinite area (spherical) 

Axis of rotation 
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• Bending the magnet creates a strong quadrupole field (~1%) and a 
sextupole component (~0.03%) 

• Current is adjusted in the model to compensate for the multipole content 
(<1e-6) allowing for the effects of the iron to be isolated 

Effect of Bending on Multipole Content 
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• Magnetization of iron is asymmetrical 

Flux Density Distribution 
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2.06 T peak in iron 
Bore field = 3.85 T 

900 mm 

Magnetization is 
higher at the inner 
radius 
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• Bore field shows no saturation up to nominal current 

Bore Field vs. Operating Current 
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• The bent iron yoke creates a strong quadrupole field up to 9% at low field,  
a strong sextupole field up to 0.22% of the dipole field. A quadrupole and 
decapole field become significant after 800 A (0.02%) 

Multipole Content vs. Operating Current 
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Effect of Iron Saturation – Field Plots 
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• Bore field decreases as iron becomes more saturated 

Effect of Iron Saturation – Bore Field 
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• Iron saturation leads to a quadrupole of up to 1.1%, a quadrupole field of up to 0.7 
%, a decapole field up to 0.1%  and a small octopole appears at high saturation. 

• As the field increases in the iron, it becomes more “uniformly” magnetized 
lowering the multipole fields. 

Multipole Content for Saturated Yoke 
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• Because of its shape, the iron yoke of a bent dipole 
has a much stronger effect on field uniformity than 
a straight one. 

• The multipole fields created would have a 
significant effect on the beam and need to be 
compensated. 

• The magnitude of the multipole fields depends 
strongly on the operating current which makes 
active compensation necessary 

 

• The Double-Helix™ magnet technology enables the 
development of bent combined function magnets 

Straight Magnet Conclusions 

26 




