Christopher J. Forster Marc K. Smith

School of Mechanical Engineering, Georgia Institute of Technology

THE TRANSIENT MODELING OF BUBBLE PINCH-OFF USING AN ALE MOVING MESH

Outline

- Motivation
- Initial Configuration
- Governing Equations
- Pinch-off Procedure
- ALE Simulation Results
- Level-Set and Phase-Field Comparisons
- Conclusions
- Future Work

Motivation

- This model is being developed for modeling boiling heat transfer in the presence of an acoustic field.
 - Increase critical heat flux by delaying transition to film boiling.
- Begin with modeling a single isothermal bubble going through pinch-off.

Initial Configuration

- Model is 2D axisymmetric.
- Initial geometry is used in ALE, level-set, and phase-field models.
- Initial bubble volume is 1.131e-7 m³.

Boundary Number	<u>Type</u>	Condition Satisfied
1	Wall	No Penetration, Slip
2	Wall	No Penetration, Slip
3	Wall	No Penetration, Slip
4	Open Boundary	Zero Gage Pressure
5	Symmetry	Axial Symmetry
6	Symmetry	Axial Symmetry
7 (inside)	General Stress	Pressure, Continuity of Shear Stress
7 (outside)	Moving Wall	No Slip at Fluid Interface

Governing Equations

Normal-stress boundary condition:

$$\left(\underline{\underline{\sigma}_l} - \underline{\underline{\sigma}_g}\right)\hat{n} = \sigma \kappa \hat{n}$$

Stress tensor and curvature defined as:

$$\underline{\underline{\sigma}}_{g,l} = \left[-P\underline{\underline{I}} + \eta \left(\nabla \underline{\underline{u}} + \left(\nabla \underline{\underline{u}} \right)^T \right) \right]_{g,l} \quad \text{and} \quad \kappa = \nabla_s \cdot \hat{n}$$

Multiplying both sides by a test function and integrating results in:

$$\int_{\partial\Omega} \left(\tilde{\varphi} \underline{\sigma_l} \hat{n} \right) dA = \int_{\partial\Omega} \left(\tilde{\varphi} \underline{\sigma_g} \hat{n} \right) dA + \int_{\partial\Omega} \left(\tilde{\varphi} \sigma \kappa \hat{n} \right) dA$$

Applying the surface divergence theorem and substituting back in yields:

$$\int_{\partial\Omega} \left(\tilde{\varphi} \underline{\underline{\sigma}}_{l} \hat{n} \right) dA = \int_{\partial\Omega} \left(\tilde{\varphi} \underline{\underline{\sigma}}_{g} \hat{n} \right) dA - \int_{\partial\Omega} (\sigma \nabla_{s} \tilde{\varphi}) dA + \int_{\partial^{2}\Omega} (\sigma \tilde{\varphi} \hat{m}) ds$$

Pinch-Off Procedure

- A pinch-off point is determined visually, near the minimum neck radius. A gap height is chosen and a point is inserted at the top and bottom. Additional points are removed near the edge of the gap to get a smooth profile. Finally, the new set of points are fit with splines.
- A minimum number of points were removed to preserve as much of the original shape as possible.
- •The pinch-off method in the model presented does not conserve mass during the transition.

Pinch-Off Procedure (cont.)

ALE Simulation Results

Level-Set and Phase-Field Comparisons

ALE (Slip BC)

Level-Set (Slip Length BC)

Non-Conservative Phase-Field (No-Slip BC)

Level-Set and Phase-Field Comparisons (2)

<u>Model Type</u>	Solution Time [min]	Simulation End Time [s]	<u>t* [min/ms]</u>
ALE	30	0.096	0.31
LS	700	0.069	10.1
PF Conserv.	280	0.050	5.6
PF, Non-Conserv.	105	0.100	1.05

<u>Model Type</u>	Peak Memory Usage [GB]		(Compositation Times)
ALE	4	4* —	(Computation Time)
LS	4.5	ι –	(Simulation Duration)
PF, Non-Conserv.	7		

Conclusions

ALE method:

- Provides a sharp interface to apply boundary conditions.
- Tracks fluid interface and conserves mass well.
- Reduces computing requirements in both CPU capabilities and memory capacity.
- ALE application mode allows for the use of a contact line with a fixed angle and no-slip, sliplength parameter, or slip conditions.
- Alternatively, a fixed contact line can be enforced while allowing change in contact angle.

Future Work

- The pinch-off process will be modeled using asymptotic approximations to compute the new geometry immediately after pinch-off and the corresponding velocity and pressure fields.
 - The spatial and time scales become too small to numerically resolve in a reasonable time frame.
- Incorporate heat transfer and pressure acoustic application modes.

Questions?

Tolerances – Study

Percent Change in Mass

	0.01	0.005	0.001	0.0005	0.0001
0.001	0.7778	0.6748			
0.0005		0.4670	0.1724		
0.0001			0.0396	0.0202	
0.00005				-0.01	
0.00001					-0.0147

Abs. Tol.

 $R_o = 3mm$

Rel. Tol.

Tolerances – Study (2)

Level-Set and Phase-Field Boundary Conditions

Pre-Pinch-Off Pressure and Velocity Fields

