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Abstract: The finite element method applied to 
the  -  turbulence model is used to investigate 
the two-stream turbulent mixing layer.  Whereas 
the model is known as one of the most popular of 
the turbulence models to date, the model has yet 
to be applied to the classical mixing layer 
problem to the best of our knowledge.  A 
transient  -  turbulence model in COMSOL 
version 3.5a is used to solve this problem.  In 
this work, a new method for visualization of 
vortex-shedding is demonstrated by solving for 
the transient response with a uniform inlet 
velocity superposed with stream-wise fluctuating 
velocity components upon the individual 
streams.  The random fluctuating velocity 
imposed is similar to velocity measurements 
encountered in previously reported experiments 
with user-controlled frequency and amplitude 
factors.  This method predicts good agreement 
with the motivating literature but does not show 
self-similarity for the fluctuating terms until 
            .  The results show that the time-
averaged results of a transient solution of this 
type will yield an identical result to the steady-
state solution.   
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1. Introduction 
 

Free shear flows are found both in nature and 
in important engineering applications, including 
chemical process control, combustion, and 
environmental dispersion.  Thus, the ability to 
understand and predict free shear flow behavior 
is a necessary and significant task of many 
research establishments.  Furthermore, the 
classical two-stream turbulent mixing layer 
problem is the subject of much experimental 
work in order to understand and quantify the 
physical nature of turbulent flow, and the ability 
to accurately represent the classical problem will 
validate the method for a variety of engineering 
applications.  

The classical mixing layer problem has been 
studied as early as 1943 when Görtler in [1] 
suggested a self-similar profile of the form 
   

 

 
          .  Several authors have 

simulated the natural evolution of mixing layer 
vortex phenomenon of experiments by imposing 
time-varying inlet conditions in their numerical 
studies of turbulent flow.  Sandham [2]  applied 
a random-walk to the phase of the forcing 
eigenfunctions at the inlet boundary using a 
finite difference method without the use of a 
turbulence model. The random-walk in his work 
is appropriate for simulating actual turbulent 
flow velocity measurements one might obtain 
from experiment.  Inoue [3] applied forcing 
functions at the inlet prescribed as a 
superposition of the fundamental frequency with 
its sub-harmonic frequencies; he showed the 
effectiveness of this technique to control the 
mixing layer growth using a vortex method. 
Stanley [4] investigated the effects of inflow 
forcing to the mixing layer problem by direct 
numerical simulation and showed that their 
results are in agreement with the self-similar 
measurements obtained by Plesniak [5].   

The purpose of the present work is to 
investigate new methods to predict the overall 
flow-field quantities of spatially evolving free 
shear flows.  The two-stream turbulent mixing-
layer problem is solved using superposition of 
random turbulent fluctuations upon the 
individual streams using the finite element model 
applied to the  -  turbulence model.  The affect 
of superposing random frequencies on the 
uniform inlet velocities is investigated in order to 
simulate the random velocity measurements 
obtained in experiment.  The finite element 
method applied to the k-ε turbulence model has 
not been previously applied to the turbulent two-
stream mixing layer to the best of our 
knowledge.  Both the steady and time-averaged 
unsteady results were obtained using COMSOL 
version 3.5a.  Spatial evolution of the mixing 
layer is determined from the unsteady solution. 
The self-similarity of the results discussed 
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demonstrated agreement with previous 
experiments and numerical methods.   
 
2. Computational Procedure 
 
2.1. Overview 

 
The problem is solved in a three-step process 

because the domain and mesh is loosely 
dependent on the results.  A broad overview of 
the method is informative before details of the 
procedure are discussed.  We proceed under the 
assumption that the steady-state results will 
identically represent time-averaged transient 
results.  As a first step, a large domain is 
initialized of the order of approximately 3 meters 
wide and 10 meters long with a mean flow 
direction to the right.  From this model, the 
initial shear layer thickness,      , is calculated 
for which model parameters (overall dimensions, 
mesh element lengths, turbulent length scale, 
etc.) are non-dimensionalized in the next steps.  
This initial shear layer thickness is effectively 
taken at a near-field  -location, that is, before 
vortical structures are expected in a transient 
model.  For the purposes of this investigation, 
      is taken at       m.  In the second step, 
the domain size and mesh elements are 
reconfigured with respect to the shear layer 
thickness calculated in the previous step, and a 
second steady-state result is obtained.  The 
steady-state result is used to initialize the 
transient problem and transient results are 
obtained in the third step with random 
fluctuations applied at the inlet.  
 
2.2. Computational Domain and Boundaries 

 
The essential characteristic of an accurate 

model of free shear turbulent flow in an open 
space is that the boundary conditions are chosen 
such that they do not interact with the physical 
nature of the flow.  The size of the computational 
domain is chosen such that a small area of 
interest is imbedded in a much larger fluid 
domain, placing the boundaries far from the area 
of interest.  The boundary condition specification 
has been cited by previous authors as one of the 
greatest difficulties in the simulation of a flow 
that is essentially in an open domain.  Previous 
efforts have brought forth boundary conditions 
that are non-reflective for the Euler equations.  
Giles [6], Thompson [7] and Poinsot [8] are 

among the authors that have been cited in the 
formation of boundary conditions for open flow 
computations.   

The boundary conditions of the mixing layer 
problem in a semi-infinite domain are specified 
as             and            , 
according to Görtler [1].  We expect that fluid 
flows tangentially to the computational fluid 
domain and mass does not cross the boundaries 
in a steady-state solution, deeming symmetric 
boundary conditions appropriate for the upper 
and lower boundaries in steady-state 
computations.  The steady-state result is readily 
obtained and used to initialize the transient 
model.  A foregoing assumption for obtaining a 
transient response is that information that passes 
across these boundaries is essentially lost and not 
important if the domain is large enough.  The 
open boundaries require that the viscous stresses 
be zero with an additional pressure correction at 
the outflow boundary.   

Figure 1 shows a description of the boundary 
conditions used in the computational domain of 

Figure 2. Cross section of computational fluid domain 
showing (a) mesh and (b) dimensionless mesh element 
distribution,        . 

Figure 1. Boundary Condition Specifications of 
Transient Model 
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the transient mixing layer problem for this 
investigation.  One can obtain the shear layer 
thickness before computing the transient 
response since the solution is initialized with a 
steady-state response.  The shear or vorticity 
thickness is defined here as (1).   

 
      

       

               
  (1) 

 
The initial shear thickness calculated using 

(1) at       m is              m. With the 
shear thickness known, the domain and mesh for 
the transient model are reconfigured according to 
Stanley [4] as a guideline, and foregoing 
parameters are non-dimensionalized with respect 
to the shear thickness as defined above.  A new 
domain with a size of             and 
           is split into an inner and outer 
sub-domain.  An inner sub-domain of a width 
           extends the length of the entire 
computational domain in order to concentrate a 
fine mesh around the mixing layer where 
gradients are expected to be high; and the outer 
domain close to the upper and lower boundaries 
is given a relatively courser mesh. Figure 2 
shows a cross-sectional view of the 
computational domain with the resultant mesh 
plot and mesh element length,         at each y-
location.  Four hundred mesh elements are 
placed along the     line, for which the inner 
sub-domain is meshed and elements are not 
allowed to grow.  In the outer sub-domain, an 
element growth rate of 1.15 is specified.   
  
2.3. Inlet Conditions 

 
One attribute of the  -  turbulence model as 

given in COMSOL 3.5a is the user’s ability to 
either specify the turbulent length scale and the 
turbulence intensity or an initial value for   and 
 , denoted as    and   , respectively.  Details of 
the vortex shedding phenomenon inside the 
mixing layer are more apparent when the 
turbulent length scale is minimized since this 
parameter directly translates to the diameter of 
the smallest eddy resolved in the model.  For this 
reason, we specified the turbulent length scale 
and intensity at the inlet.  Vortex shedding is 
observed for transient results of a mixing layer 
model even when the domain is first initialized 
with a steady-state result.  Stanley [4] and 
Sandham [2] have initialized their transient 

results with the hyperbolic tangent shear-layer 
profile at the inlet in order to model flow over a 
splitter plate. For the purpose of this 
investigation, an initial condition is specified in 
the entire computational domain rather than only 
at the inlet boundary.   

A new aspect of the computational procedure 
is in the characteristics of the inlet velocity 
giving rise to a vortex shedding phenomenon.  
Previous authors have attempted many methods 
beginning with understanding the natural 
frequency of the system that causes the flow to 
be most unstable.  Essentially, we are modeling 
the velocity measurements of a turbulent flow 
experiment by superposing multiple random 
frequencies over a mean input velocity.  This 
approach gains merit since the results of the 
computations are readily matched with the 
results of the experiments.  The method adds 
additional controlling parameters on the model 
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Figure 3. Inlet Velocity Profile 

Figure 5. Spectral Analysis of Inlet Velocity Profile 

Figure 4. Relative distribution of inlet velocity 
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which are amplitude and frequency factors.  
Figure 3 is a computer-generated inlet velocity 
with amplitude and frequency factors scaled 
appropriately to model an actual turbulent flow 
velocity signal.  

In Figure 3, the nominal velocity ratio for the 
simulation is           which is consistent 
with the values used by other researchers cited.  
This ratio also holds for the standard deviation 
and the average absolute error as well.  Note that 
the amplitude of the fluctuations is proportional 
to the mean velocity of the individual stream but 
the frequency remains consistent.  This is more 
apparent in observance of the velocity 
distribution and spectral analysis given in 

Figures 5 and 6, respectively.  These figures are 
representative of uniform distribution of 
fluctuating components about a mean velocity.  
Although a Gaussian distribution exists about the 
mean velocity, this is considered as a low noise 
system because the spectral analysis trails off 
above approximately 100 Hz.   
 

3. Results.  
 

Computational results were obtained for 
water fluid properties, and with an inlet velocity 
profile as previously discussed.  The results 
capturing the vortex shedding phenomenon of 
water for ten seconds was used to compute the 
similarity profiles and these are in agreement 
with those presented by Plesniak [5].   The 
turbulent length scale for the flow visualization 
in Figure 6 is               . 

Time-averaging a transient mixing layer 
problem yields results identical to the steady-
state solution with the advantage that fluctuating 
velocity characteristics can be analyzed.  Note 
that fluctuating components of velocity observed 
are in the  -direction even though the inlet 
profile has only fluctuations specified in the 
streamwise direction.  In order to demonstrate 
self-similarity, the  - and  -velocity components 
are extracted from the model at intervals of 
       seconds.  The  - and  -velocity 
components are fluctuating with time as is the 
derivative of the mean  -velocity component, 
      , from which much of the physics of the 
problem is derived.  The maximum time-
averaged value of        is used to calculate the 
shear layer thickness using (1), and implicitly, 
the growth of the mixing layer shown here as 
Figure 7.    

The growth of the fluctuating velocity 
components are given in terms of their root mean 
square values in Figure 8.  Of particular interest 
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Figure 6. Vorticity, Ω, contour plot at two separate times. Vorticity range for contours shown is -60 < Ω < -0.2 s-1. 

Figure 7. Growth of the shear layer thickness  

Figure 8. Growth of fluctuating velocity components 
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is that the fluctuating components of velocity are 
still growing at the exit of the domain when 
plotted together with the flow direction.  Self-
similarity is demonstrated with respect to the 
shear layer thickness in light of the foregoing 
results and is given here in Figures 9-11.  The 
model problem shows very good agreement with 
the literature and the same results is found for 
both the steady-state and the time-averaged 
transient solution, yet the fluctuating components 
of velocity in the flow and normal directions are 

self-similar and nearly self-similar at        
  , respectively.   
 
4. Discussion 
 

Since the  -  turbulence model is known for 
application in free shear flows, it follows that it 
is an appropriate model for the turbulent two-
stream mixing layer, which is demonstrated here 
using COMSOL 3.5a.  The growth of the mixing 
layer can be attributed to the amplitude scaling 
of the inlet velocity fluctuations prescribed using 
this method.  Although the model correctly 
predicted linear growth of the shear layer 
thickness, it under-predicted the rate of growth 
               , compared with Stanley [4] 
of 0.045 and the results from the  -  turbulence 
model are expected to change if the amplitude 
factor of the inlet fluctuations is increased.  
Although the scope of this investigation is 
limited to an introduction of the method, the 
growth of the shear layer is used as an indication 
of how the amplitude factor should be modified 
in succeeding simulations by examination of the 
mixing layer growth.   

The results presented in Figure 8 indicate the 
growth of          

     
 
 at     and for “all 

 ” and is understood when one realizes that the 
results are a reproduction of the self-similar 
results in Figure 10.  It should be noted that 
        

  does not have a maximum at    .  
The maximum value of these fluctuations 
originally occur at the     location, but then 
changes to the edge of the mixing layer, and can 
possibly be attributed to  the boundary 
conditions.  However, boundary conditions have 
proven to be an important factor in the eventual 
convergence of such a model.   
 
5. Conclusion.  
 

A new method is investigated in solving the 
classical two-stream turbulent mixing layer 
problem.  The finite element method applied to 
the  -  turbulence model subject to random 
streamwise fluctuations prescribed at the inlet 
boundary is employed, and the results are in 
good agreement with the motivating literature of 
various experiments and computational methods.  
The aforementioned method investigated here is 
shown to simulate both qualitative and 

Figure 9. Self similarity of the mean velocity at 
different streamwise locations 

Figure 10. Self similarity of the  -component of 
fluctuating velocity reached for           

Figure 11. Approaching self similarity of the  -
component of fluctuating velocity for           
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quantitative observed phenomena of turbulent 
mixing and vortex patterns.   

The scope of this investigation covers an 
introduction of the new method and two new 
factors of the model contribute to the results 
presented here, namely a frequency and 
amplitude factor introduced in the algorithm 
used to generate the fluctuating inlet velocity 
profile.  A recommendation for future study is to 
conduct a parametric study of the factors 
influencing the results for which boundary 
conditions, the turbulent length scale, and 
amplitude and frequency factors may be 
included. A future investigation specific to the 
influence of the boundary conditions and 
possible implementation of the non-reflecting 
boundary conditions in the literature is an 
equally important recommendation.   
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7. Appendix: MATLAB Code for Inlet 

Velocity  
 
dt = 0.01; % change in time 
nfluct = 2000; % frequencies 
tfinal = 60; % seconds 
AmpFluct =  0.0025; % amplitude  
pFactor = 0.1; % frequency  

  
t = 0:dt:tfinal; % time vector 
rand('state',sum(100*clock)); 

  
% Upper velocity functions 
U1mean = 10; 
a1 = rand(1,nfluct)/pFactor; 
U1 = U1mean;  
for n = 1:length(a1) 
    U1 = U1 + ... 
        ((-1)^n)*... 
        U1mean*AmpFluct*... 
        sin(a1(n)*t); 
end; clear n; 

  
% Lower velocity functions 
U2mean = U1mean/2; 
a2 = rand(1,nfluct)/pFactor; 
U2 = U2mean;  
for n = 1:length(a2) 
    U2 = U2 + ... 
        ((-1)^n)*... 
        U2mean*AmpFluct*... 
        sin(a2(n)*t); 
end 
 


