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Abstract 
Isogrid components are widely used in aerospace 
applications because they reduce weight while 
maintaining structural efficiency. This paper 
reports findings from an investigation on the 
buckling of isogrid plates.  Isogrid plates can be 
regarded as flat plates strengthened by an 
appropriately designed superimposed grid 
structure of ribs (see figure 1).  
 
 

 
Figure 1: Typical isogrid plate structure  

 
Finite element models of of both uniform 
thickness and isogrid plate structures are 
developed using COMSOL Multiphysics and the 
buckling behavior is compared with that 
obtained using analytical methods.  
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modes. 
 
 
1. Introduction 

The design of the isogrid structure allows the 
component to maintain isotropic properties even 
though material has been selective removed for 
weight reduction.  Most importantly, the 
reduction in weight is obtained without 
significant deleterious effects on stiffness. In 
applications, isogrid structures are subjected to a 
variety of boundary constraints and loading 
conditions all of which can vary during 
operation.  Initial designs are completed with the 
best available predicted loads that must then be 
validated during engine testing.  Even with 

advances in technology the predicted 
temperatures and pressures are not exact.  These 
changes can vary the component load direction 
and orientation.  In order to maintain structural 
integrity the isogrid must continue to function 
properly if load orientation changes during 
operation.   
 
In designing isogrid structures the components 
are often simplified to a single sheet.  This 
simplification was developed for NASA years 
ago and is known as the E*t* method [1].  The 
simplification process of the isogrid has been 
noted as a potential cause of component failure 
and is currently being reviewed. The component 
is designed to sustain specific boundary 
conditions (e.g. load directions, magnitudes and 
constraints).  The change in load direction is also 
a potential cause of failure.  For this reason, three 
different load orientations are investigated in this 
report to ensure the load orientation relative to 
the isogrid is not a reason for failure. 
 
2. Methodology 

Once the plate characteristics and boundary 
conditions are defined, a closed form solution is 
evaluated for each loading condition. 
Corresponding finite element models are then 
created   for comparison to the closed from 
solution.  The E*t* method is used to simplify the 
isogrid to a plate.  This simplification is used as 
an input to the analytical solution as well as used 
in a numerical analysis of the plate.  These two 
solutions are compared to ensure proper 
boundary condition modeling technique as well 
as to determine an appropriate mesh density. The 
plate model will also be used for comparison to 
the modeled isogrid geometry.  All numerical 
models are created using the COMSOL finite 
element code.  
 
In COMSOL both a static solution and a linear 
buckling solution are obtained.  The static 
solution is reviewed to verify the input load has 
the correct magnitude and that the initial 
conditions do not impart any additional 
constraint.  Upon verification of the boundary 
conditions and input loads the linear buckling 
analysis is completed.  This analysis is 
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completed with a unit load (verified in the static 
solution) so that the calculated eigen-value is the 
critical buckling load.  These loads are then 
compared to the analytical solution for 
verification of the E*t* methodology.  Analytical 
buckling mode shapes are also compared to 
numerically computed mode shapes of the plate 
and isogrid to ensure consistency. 
 
Isogrid structures are typically cumbersome to 
model and multiple iterations are needed to 
obtain the correct stiffness required in the design.  
Thus it saves design iteration time if the structure 
can be turned into an equivalent single sheet with 
representative stiffness.  The plate will not have 
the same geometric dimensions as the isogrid but 
it will have the same stiffness in both the tensile 
and bending directions.  This simplification 
allows multiple design iterations to be completed 
by changing only the stiffness of the part and not 
the model geometry.  The simplification also 
allows for a reduction in computational time. A 
detailed description of the analytical formulation 
used to obtain closed-form solutions for buckling 
of isogrid structures using the E*t* method 
together with references to the appropriate 
literature can be found in [2]. 
 
3. Analytical Solutions 

The first case is a simply supported plate in uni-
axial compression. The plate was 1” x 1” with a 
thickness of .040”.  The second case used was a 
1.000” x 1.1547” plate with a thickness of .046”.  
This thickness is derived from the isogrid cross-
section geometry shown in figure 2 and the 
equations presented [2].  The isogrid is 
representative of the geometry found in a failing 
component.  The face sheet thickness is .030” 
and the ribs are .050” tall by .040” wide with a 
triangle side length (a) of 1.154” and a triangle 
height (h) of 1.000”. The two cases will be used 
to verify the numerical results for a plate with 
varying height to width ratio as well as 
thickness. 
 

.030Ó
.040Ó

.050Ó

1.000Ó  
Figure 2:  Isogrid geometry 

 

The plate has all edges simply supported.  The 
free body diagram in figure 3 is similar to a 
section of the component in which the suspected 
change in boundary conditions is being 
observed.  The component is free in the y 
direction and the load is known in the x 
direction.  
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Figure 3:  Free body diagram 

 
The buckling load for this problem is calculated 
using the closed form solution.  The critical 
value will occur with n equal to 1, where both m 
and n are integers.  The value of m corresponds 
to the number of half waves parallel to the 
direction of loading while n determines the 
number of half waves perpendicular to the 
direction of loading.  The material properties 
used in all calculations are shown in table 1 and 
the calculated first 5 critical buckling loads are 
shown in table 2.  
 

E
*
 20.83e6 psi 

v .3 

Table 1: Material Properties 
 

1.000Ó x 1.000 Ó Plate 
1.000Ó x 1.1547Ó  Plate 
b = 1.000  

Fcritical (lb)  m n Fcritical (lb)  m n 
4818  1 1 7529  1 1 
7529  2 1 9833  2 1 
13385  3 1 16406  3 1 
19274  2 2 25966  4 1 
21758  4 1 30115  2 2 

 
 

Table 2: Critical buckling loads (cases 1 and 2) 
 
From the results in table 2 it is seen that the 
mode shapes of the plate change as a function of 
the ratio of a/b.  This can be seen by the change 
in critical load and the values of m and n 
between the fourth and fifth values of the 
calculated examples. 
 
The third case investigated involved a change in 
orientation of the loading on the plate. For the 
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1x1 plate there is no change in critical buckling 
loads but for the rectangular plate of case 2 
(1.000 x 1.1547) there is a change to the critical 
loads.  Again this is caused by the ratio of a/b 
and the change in load orientation.  The 
comparison of calculated loads can be seen in 
table 3. 
 
Load on edge a 
a = 1.000” 

Load on edge b 
b = 1.1547” 

Fcritical 
(lb) 

m n Fcritical (lb) m n 

6520 1 1 7529 1 1 
12008 2 1 9833 2 1 
22487 3 1 16406 3 1 
26080 2 2 25966 4 1 
34064 3 2 30115 2 2 
Table 3:  Buckling load/mode change with edge 
loading (case 3) 
 
Additionally the critical loads were calculated 
for loading on both of the edges of the plate.  
This load case is most similar to the loading of 
the failing part in the field.  The additional load 
on the plate further reduces the load required to 
buckle the plate.  
 
This final load case has a solution shown in 
equation 1.  Again the values of m and n change 
the mode shape and the critical load required to 
produce buckling in the plate.  As expected the 
combined load case has reduced the critical value 
below the previous two load cases.  The 
calculation of the critical values can be seen in 
table 4. 

Px =
(mb a)2 + n2 

2

mb a( )2 + (Pyb Pxa)n2

π 2D

b
 [1] 

 
Calculated (lb) Kcc m n 

3494 1.9 1 1 

9872 5.4 1 2 

7631 4.1 2 1 

13976 7.6 2 2 

14541 7.9 3 1 

Table 4:  Critical values for loading on both 
edges of 1.000 x 1.1547 plate (case 4) 

 
Each of these load cases will be compared to the 
simplified isogrid structure to determine the 
applicability of the E*t* method. 

 
4. Finite Element Modeling 

COMSOL was used to model the buckling of the 
isogrid plate and that of the equivalent plate.  
The results in this section are then compared to 
the analytical solutions from the previous section 
to determine the validity of both models.  The 
numerical results are also compared to each other 
to ensure the use of the equivalent plate method 
will provide similar numerical answers to the 
isogrid model.  
 
Each model created is used to first compute a 
static solution prior to calculating a buckling 
solution.  This is required so that COMSOL can 
calculate the pre-stress in the model.  The pre-
stress is required for the calculation of the 
stiffness matrix needed in the eigen-value 
buckling solution. 
 
Four different models were created to verify the 
applicability of the E*t* method.  Each model 
was created using the gravitational IPS units.  
The two main variables elastic modulus (E and 
E

*) and thickness (t and t*) have units of psi and 
inches.  
 
The first model created was a 1.000” x 1.1547” x 
0.046” plate.  The plate model was used to 
compare the results of the COMSOL modeling 
technique to those obtained from the analytical 
solution.  The plate is a constant thickness (t* = 
0.046”) and given modulus of elasticity (E* = 
20.83e6 psi). 
 
To match the plate model described above a 
single isogrid panel was created for comparison.  
The geometry was created using a single block 
(1.000” x 1.1547” x 0.030”) and adding 
individual ribs.  The ribs were created at the 
center of the plate and then rotated 60° about the 
center in either direction.  Each rib was 1.500” x 
0.040” x 0.050”.  These ribs were then trimmed 
with separate blocks to create the proper length.  
The final rib was then created at the center of the 
plate and formed the last piece of the isogrid. 
 
The third model created was a 4.000” x 4.618” x 
0.046” plate.  The plate was again modeled from 
the simplification of the isogrid, which required 
a constant thickness (t*) of 0.046”.   The modulus 
of elasticity (E* = 20.83e6 psi) used was also the 



 

 4

same as the original 1.000” plate and calculated 
using the E*t* process. 
 
The final model created was an isogrid geometry 
4.000” x 4.618” that maintained the same rib 
length (a) and height (h) of the initial 1.000” 
model but contained more isogrid cells.  The 
model was created using a similar technique to 
the first model but after rotating the diagonal ribs 
each rib was arrayed in the x direction to create 
multiple entities from the original.  The array 
process allowed for a reduced number of 
modeling steps.  Once the rotated ribs were 
created the final horizontal ribs were added and 
united to the rotated ribs.  Creating a composite 
object of just the ribs allowed for a reduction in 
the number of subtractions required to create 
diagonal ribs with the proper length.  The model 
now had two components.  The face sheet of 
constant thickness and the rib structure were left 
as separate entities so that a rib height variation 
could also be completed. 
 
The rib height study models were each created 
separately by scaling the ribs of the original 
isogrid model in the z direction.  This allowed 
for the face sheet thickness to remain unchanged 
for each separate analysis so that only a change 
in rib geometry was evaluated. 
 
The isogrid dimensions seen in figure 4 were 
used along with the procedure described in [2] to 
produce the appropriate thickness (t*) and 
modulus of elasticity (E*).  The computations 
were completed in excel to simplify the 
calculation effort.  Table 5 shows the comparison 
of thickness and elastic modulus. 

.030Ó
.040Ó

.050Ó

1.000Ó

.046Ó

1.000Ó

 
Figure 4:  Plate and isogrid cross section 

 
 
 
 

 

 Thickness Elastic Modulus (lb/in2) 

Plate .046” 20.83e6 (E*) 

Isogrid As drawn 30.00e6 (E0) 

Table 5:  Material property comparison 
 
The boundary conditions for the isogrid were 
identical to the plate.  Each side of the isogrid is 
simply supported to match the analytical solution 
constraints.  This requires support in the vertical 
z direction with additional constraints at specific 
points in order to prevent a rigid body motion.  
The point constraints are at the center of each 
edge and constrain movement in the direction 
parallel to the edge.   
 
The geometry from the 1.000” x 1.1547” model 
of both the equivalent sheet and the isogrid were 
meshed with tetrahedral 3D quadratic elements.  
The isogrid mesh contained 25423 elements and 
126690 degrees of freedom.  The analytical 
solution of a plate with a single edge load 
produces a critical buckling load of 7529 lb.  The 
critical buckling load for the isogrid finite 
element model was computed at 6735 lb and the 
finite element model of the plate calculated a 
critical buckling load of 7180 lb.  This is within 
10.5% and 4.5% respectively of the analytical 
solution for a flat plate of equivalent stiffness.  
 
These predictions were not considered 
acceptable for verification of the equivalent 
stiffness method so a larger 4.000” x 4.618” 
model was evaluated to remove the influence 
that the boundary conditions may have on the 
results. Therefore a sequence of increasingly 
refined models was developed.   
 
The final model previously descried was a 
rectangular panel with the same isogrid pattern 
as the small model.  The lengths a and h for the 
isogrid were kept the same so that the E*t* 
simplification did not change between the small 
and large models.  The isogrid simplification 
reduces the system to a unit width, which 
remains applicable to the larger system, provided 
the geometry is produced properly.  All final 
results and comparisons presented will be from 
the larger 4.000” x 4.618” model. 
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The isogrid model mesh, boundary conditions 
and loads can be seen in figures 5-7.  The final 
mesh consisted of 16358 elements and 96660 
degrees of freedom.  The free mesh parameters 
were set to “coarser” to create the mesh.  A study 
was completed using the “extremely coarse” and 
“extra coarse” free mesh parameter option.  
 
 

 
Figure 5:  Final isogrid geometry 

 
Figure 6:  Final isogrid boundary conditions 

 
Figure 7:  Final isogrid load (case 1) 
 
 
 
Element count versus percent error to the first 
critical buckling load is shown in table 6.   
 
Model Element 

Count 

Analytical 

Solution (lb) 

First Critical 

Buckling Mode (lb) 

Percent 

Error 

6716 1882 2049 8.86 

10076 1882 1972 4.77 

Isogrid 

16358 1882 1946 3.39 

4408 1882 1870 -.65 

7668 1882 1862 -1.07 

12203 1882 1858 -1.28 

Plate 

17432 1882 1857 -1.33 

  
Table 6:  Effect of Number of Elements on the 
computed critical Buckling Loads 
 
A similar study was also completed for the plate 
model.  The model was run with the “coarser”, 

“coarse”, “normal” and “fine” free mesh 
parameters.  This study showed that the model 
converged to a solution and the “normal” free 
mesh parameter was used.  This produced a 
model with 12203 elements.  Unlike the isogrid 
model, the plate model under-predicts the first 
critical buckling load. 
 
As the element count increased the accuracy of 
the solution increased.  A graph of the data from 
table 6 readily shows that the slope changes little 
with the number of elements once ~10000 
elements are used.  The final element count 
provided accurate results while allowing the 
model to be solved in approximately 5 minutes. 
 
The boundary conditions were again applied to 
approximate a simply supported plate and 
boundary loads were applied to the main face of 
both the plate and isogrid.  The loads were 
applied to the boundary face and applied so that 
the total input load was 1 lb per each side.   
 
To ensure the E*t* isogrid simplification method 
produces accurate critical loads all three load 
cases were run with the 4.000” x 4.618” size 
isogrid model.  This will also provide 
substantiation that load orientation into the 
isogrid can be neglected. Models were created 
with loads applied to additional faces (not shown 
in figure 7) to simulate the load cases discussed 
in the previous section.  This included loading on 
the long edge and both edges. 
  
A comparison of the buckling mode shapes and 
the corresponding loads are shown in table 7 for 
the 4.000” x 4.618” plate with loading on edge b.  
As the mode shapes increase in complexity the 
accuracy of the model does not reduce.  This 
shows the model is capable of predicting 
accurate displacement with the mesh.  For the 
loads applied to edge b the first 4 modes should 
correspond to m = 1→ 4  with the value n 
remaining constant at n = 1.   The fifth mode 
being the first mode were the value of n = 2. 
 
Calculated Percent Error Comsol Plate m n

1882 -1.28 1858 1 1

2458 -1.11 2431 2 1

7529 -1.27 7433 2 2

4102 -0.94 4063 3 1

6492 -0.87 6435 4 1  
Table 7:  4.000” x 4.618” Critical load (lb) on 
edge b 
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To ensure the model could capture the change in 
geometry (i.e. non-square) and load orientation, 
the model was run with a load applied to edge a 
(long edge).  The error results are similar to the 
model with load applied to edge b.  This showed 
the isogrid model and the E*t* method accurately 
predicted loads with a changing length ratio. 
 
The model was also evaluated for loading 
applied to both sides (a and b) of the plate and 
the solution was compared to the analytical value 
using equation 1.  The results compared well to 
the analytically calculated value as shown in 
table 8. 
 

Calculated Percent Error Comsol Plate

874 -0.75 867

2468 0.13 2471

5128 1.38 5199

1908 0.02 1908

3494 0.71 3519

3635 1.18 3678

5215 -2.07 5107  
Table 8:  4.000” x 4.618” Critical load (lb) on 

edges a and b 
 
The 4.000” x 4.618” COMSOL isogrid results 
were compared to the E*t* analytical solution and 
the COMSOL plate.  The model for the 
COMSOL isogrid accurately predicted the 
critical buckling loads as compared to both the 
analytical value and the COMSOL plate model.   
 
The final case used to verify that the E*t* method 
accurately calculates critical buckling load is the 
combined loading on both edge a and edge b.  
This load case also produces critical buckling 
loads similar to both the plate numerical and 
analytical analysis.  The result for the model with 
loads applied to both edges is seen in table 9. 
 
Calculated Percent Error Comsol Plate Isogrid Percent Error m n

874 -0.75 867 902.00 3.26 1 1

2468 0.13 2471 2556 3.57 1 2

1908 0.02 1908 1971.00 3.32 2 1

3494 0.71 3519 3532.00 1.08 2 2

3635 1.18 3678 3737.00 2.80 3 1  
Table 9:  Isogrid model critical loads (lb) 
comparison, load applied to both edges 

 
Despite accurate critical loads being calculated, 
the mode shape of the linear buckling solution 
must be verified in order to ensure there are no 
modeling issues present.  These issues can arise 
due to imperfections in the model geometry, 
boundary conditions or from anti-symmetric 
loads.  They can also arise from abrupt stiffness 

changes that may be seen in the transition 
between the skin thickness and the ribs. 
 
Thus the final step to verifying the E*t* method is 
to compare the predicted mode shapes for the 
isogrid geometry with the mode shapes produced 
by the plate model and the analytical solution.   
Each mode produced from the isogrid model is 
compared to the plate model to verify the shapes 
are correct.  The plate models can be compared 
to the analytical solution with specific values of 
m and n to determine if they are accurate.  As an 
example, figure 8 shows a mode shape 
comparison for the combined loading condition. 
 
 

 

 
Figure 8:  Isogrid and plate model mode shape 1-

5 comparison loaded on both edges 
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Changing rib geometry relative to the plate 
changes the critical buckling loads without 
changing the buckling mode shapes until the ribs 
begin to dominate the stiffness of the structure.  
An example of the change in buckling mode 
shape for varying rib geometry can be seen in 
figure 9.  This change in failure mode signifies 
when the E*t* method is no longer applicable to 
use to determine the critical buckling load or 
mode shape of the part.  
 

 
Figure 9:  Example of rib buckling mode 
 
 
To determine the change in mode shape with 
respect to rib geometry a single load case was 
completed with loads applied to both edge a and 
edge b.  Four different rib geometries were 
modeled with an increasing height.  The width of 
the rib, height of the isogrid triangle and the skin 
thickness is all held constant. 
 
As stated previously, the ribs were created in the 
COMSOL model as one composite object and 
the skin was created as a separate object, which 
allowed for rib scaling in the z direction.  For 
each new model a new value of E* and t* are 
calculated for use in the analytical solution.  
Each model was then compared to the analytical 
solution for verification of the critical buckling 
load.  Additionally the mode shapes for each 
geometry change are evaluated to ensure the 
failure mode did not change from plate buckling 
to rib buckling.   
 
5. Conclusions 

COMSOL accurately predicts both the critical 
buckling loads and mode shapes for simply 
supported flat plates.  Several models of varying 
size were compared to analytical solutions and 
the final results were within 2%.  There is good 
correlation between the two solution techniques.  
The 4” x 4.618” plate numerical model under-
predicts the buckling load relative to the 

analytical solution by approximately 1.3%, while 
the isogrid model over-predicts the critical 
buckling load relative to the analytical solution 
by approximately 3.5%.  The plate model is 
converged and it is assumed that with additional 
computational resources the isogrid model error 
could be reduced.  This is shown in the 
comparison between element count and percent 
error for the isogrid model.  This comparison and 
correlation provides the basis for using 
COMSOL to predict the validity of the E*t* 
method.  
 
The model was completed as a full symmetry 
model for all cases to ensure the proper boundary 
conditions were established.  Initially the model 
was completed with a symmetry boundary 
condition on two sides to simplify the modeling 
constrain.  Upon comparison to the analytical 
solutions and the full symmetry model the 
symmetric model did not produce answers that 
matched either the analytical solution or the full 
symmetry numerical solution.  It was assumed 
that the symmetry modeling constraints were 
either incorrectly applied or calculated incorrect 
loads and mode shapes.  No further investigation 
was completed into why the symmetric model 
did not compare favorably to the analytical or 
full symmetry solutions. 
 
Regarding mode shapes, COMSOL correctly 
produced the first five mode shapes when 
compared to the analytical solution.  Only when 
buckling of the ribs occurred were incorrect 
mode shapes produced.  The incorrect mode 
shapes were used to determine the applicability 
of the E*t* method to the geometry. 
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