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Introduction 
Whereas solid mechanics can be considered as a well 

mastered science, the interface between the mating 

solids gathers several understanding difficulties. On 

the one hand, any observation attempt becomes a 

serious challenge as the solids inherently hide the 

object under investigation. On the other hand, the 

contact behaviour is generally ruled by multiphysic 

and multiscale phenomena. As a result, both 

experimental and numerical approaches are complex. 

It is often mandatory to use them both at the same time 

to complete their respective weaknesses. 

The modelling of liquid lubrication is generally based 

on Reynolds equation 1 which is a lower dimension 

form of Navier-Stokes equations. Under some 

assumptions, the solution of this Reynolds equation 

has been obtained for the first time by Sommerfeld 2 

in 1904 for journal bearings. This opened the way to 

the modelling of conformal contacts such as pad 

bearings, gas bearings and hydrostatic bearings. The 

lubrication regime of conformal contacts is known as 

the hydrodynamic regime. To analyse concentrated 

contacts, it is often mandatory to solve the solids 

deformations together with the Reynolds equation. In 

1951 Petrusevich 3 achieved this goal for the first time 

and Dowson and Higginson 4 proposed formulae for 

line contacts that are still being used nowadays. 

Indeed, these formulae enable film thickness 

predictions for, among others, gears, deep groove ball 

bearings and roller bearings. When both elastic 

deformation and hydrodynamic effects are involved, 

the lubrication regime is referred to as the 

elastohydrodynamic (EHD) lubrication (EHL). For 

more details about the EHL modelling, refer to Lugt 

and Morales-Espejel 5. 

In the present document, an overview of the 

phenomenon involved in EHL is presented through the 

typical case of the lubricated slider bearing. This 

industrial component will be described and the 

governing equations driving its behaviour will be 

presented. A solving method will then be proposed and 

validated. Then, the influence of the different physical 

phenomena on the slider lubrication will be discussed. 

 

Theory 
The slider bearing is a basic engineering component 

allowing to carry a load and limit the wear by a fluid 

film separation of the solids. Here, it is defined by its 

length, thickness and wedge (see Figure 1). The width 

of the slider is outside of the drawing plane. 

 

 
Figure 1. Slider bearing geometry 

 
Figure 2. Slider bearing with its lubricant 

 
Figure 3. Michell thrust block at the London Science 

Museum (By Andy Dingley - Own work, CC BY-SA 3.0, 

https://commons.wikimedia.org/w/index.php?curid=4944466) 

Figure 2 presents the slider bearing with the two solids 

and the lubricant in between. The top solid is static 

(𝑢𝑡 = 0 𝑚/𝑠), while the bottom solid is moving at the 

velocity 𝑢𝑏. A load 𝑤 is applied on the top solid and it 

is transmitted to the bottom solid through the 

https://commons.wikimedia.org/w/index.php?curid=4944466


hydrodynamic pressure in the lubricant. This pressure 

distribution is generated by the lubricant flow in the 

convergent shape of the top solid. The mean pressure 

under the solid is then 𝑤/(𝑤𝑖𝑑𝑡ℎ ·  𝑙𝑒𝑛𝑔𝑡ℎ). 

This load carrying device is more generally used under 

its rotational forms: the thrust bearing (see Figure 3) 

and the tilting pad journal bearing (see Figure 4). 

However, for understanding purposes, the classical 

slider bearing is investigated. 

 

 
Figure 4. tilting pad journal bearing 

Governing Equations  
a) Reynolds equation 1 

By considering a thin film flow, the pressure is 

supposed to be constant across the film thickness. This 

enables efficient modelling of the lubricant film. The 

slider bearing is considered as infinitely wide, but the 

lineic load is chosen so that the mean pressure is the 

same as the real bearing. The Reynolds equation reads, 

in its one-dimension stationary form: 

𝜕
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with 𝑥 the space dimension along the slider length, 𝜌 

the lubricant density, ℎ the film thickness, 𝜂 the 

lubricant viscosity, 𝑝 the hydrodynamic pressure 𝑢𝑒 =
(𝑢𝑡 + 𝑢𝑏) 2⁄  the entrainment velocity, 𝑢𝑡 = 0 𝑚/𝑠 the 

top solid velocity and 𝑢𝑏 the bottom solid velocity. At 

the extremities of this domain, a 𝑝 = 0 boundary 

condition is applied (see Figure 5). 

 

 
Figure 5. Reynolds domain and boundary conditions 

b) Film thickness expression 

The film thickness is expressed as follows: 

ℎ = ℎ0 + ℎ𝑟(𝑥) + 𝜈(𝑥) + 𝑅(𝑥) 

with ℎ0 the distance between the rigid bodies, ℎ𝑟 the 

thickness of the rigid gap, 𝜈 the solid deformation sum 

and 𝑅 the surface texture. 

 

c) Solids deformation 

When the solids deformations are considered, the 

displacement field 𝒖 = {𝑢, 𝑣} is computed: 

𝛁 · 𝝈 = 0 

with 𝝈 = 𝑪(𝐸𝑒𝑞 , 𝜈𝑒𝑞) · 𝜺, 𝜺 =
1

2
(∇𝒖 + ∇𝒖𝑇) and with 

𝐸𝑒𝑞  and 𝜈𝑒𝑞  as specified in the Appendix 1. The 

boundary conditions are defined as specified in Figure 

6. 

 

 
Figure 6. Solids deformation computation and boundary 

conditions 

The solid deformation sum is not supposed to play a 

role as significant as in EHL point contacts, but it may 

change the gap shape of this conformal contact. 

 

d) Load balance 

As the slider load is carried by the hydrodynamic 

pressure, the load balance equation is verified: 

𝑤 = ∫ 𝑝 𝑑𝑥
𝑅𝑒𝑦𝑛𝑜𝑙𝑑𝑠 𝑑𝑜𝑚𝑎𝑖𝑛

 

with 𝑤 the load applied on the slider. The variable 

determined by this equation is ℎ0. Indeed, the solids 

separation will highly influence the pressure 

distribution and in turn influence the load carrying 

capacity. 

 

e) Heat transfer  

Here a basic implementation of the thermal effects is 

proposed. In the solids, the heat equation is solved: 

−∇ · 𝑘∇𝑇 = 0 

with 𝑘 the solids thermal conductivity (only valid for 

symmetric material bearings). Besides, the 

temperature is supposed to be constant across the 

lubricant film and equal to the solid mating surfaces, 

which are rough hypothesis. For quantitative 

predictions of thermal effects, the lubricant 

temperature should be free to vary in the thickness and 

the two solids should be represented. This would 

enable to consider the real kinematic influence on 

thermal effects (see Doki-Thonon et al.6 for instance). 

However, the basic assumption selected here enables 



a first approach. The heat transmitted to each solid 

(generated by the shearing in the lubricant) reads: 

𝑄𝑠 = ℎ · 𝜂 · �̇�2 

with �̇� = |𝑢𝑏 − 𝑢𝑡| ℎ⁄  the shear rate. It intervenes as a 

boundary condition, as represented in Figure 7. The 

other boundary condition, at the bottom of the slider, 

accounts for a thermal regulation of the mechanism 

(see Figure 7), with 𝑇0 the ambient temperature. 

 

 
Figure 7. Heat transfer domain and boundary conditions 

Constitutive relations 
The constitutive relations proposed here are not 

restrictive and other possibilities are available. 

However, the present relations are relevant for the 

slider bearing case. 

a) Compressibility 

The density of the lubricant is predicted (unless 

otherwise specified) by the Dowson and Higginson 7 

relation, together with a thermal expansivity term 

proposed by Ehret et al. 8: 

𝜌(𝑝, 𝑇) = 𝜌0 ·
5.9 108 + 1.34 𝑝

5.9 108 + 𝑝
· (1 − 𝛽 · (𝑇 − 𝑇0)) 

with 𝜌0 the lubricant density at ambient temperature 

and pressure, 𝛽 the thermal expansivity coefficient and 

𝑇 the lubricant temperature.  

 

b) Piezoviscosity 

In this model, a Roelands equation 9 is selected to 

account for the Newtonian viscosity temperature 

pressure relationship: 

𝜇(𝑝, 𝑇) = (𝜇0 𝑒−𝛾 (𝑇−𝑇0)) (
𝜇0

𝜇𝑅

)
(1+

𝑝
𝑝𝑅

)
𝑧−1

 

with 𝜇0 the viscosity at ambient pressure and 

temperature, 𝛾 the temperature viscosity coefficient, 

𝜇𝑅 the reference viscosity, 𝑝𝑅 the reference pressure, 

𝑧 =  𝛼 𝑝𝑅 ln (𝜇0 𝜇𝑅⁄ )⁄  the piezoviscosity index, and 𝛼 

the piezoviscosity coefficient. The first term 

corresponds to the temperature influence and the 

second one corresponds to the pressure influence.  

 

c) Shear thinning 

As the shear stress may exceed the Newtonian 

behaviour limit of the lubricant under some operating 

conditions, a shear thinning equation is also included 

in the model. This Carreau-Yasuda 10 expression 

reads: 

𝜂(𝑝, 𝑇, 𝜏) =
𝜇(𝑝, 𝑇)

(1 + (
𝜏
𝐺

)
𝑎

)

1
𝑛

−1

𝑎

 

with 𝜏 = 𝜇 �̇� the shear stress, 𝐺, 𝑎 and 𝑛 parameters of 

the Carreau-Yasuda expression. 

 

Solving method 

The method used here is composed of two steps. The 

first one is an initialisation step, where solid 

deformation, temperature variations and shear stress 

influence are not included. At this stage: 

𝜈(𝑥) = 0 

𝑇 = 𝑇0 

𝜏 = 0 

A second step is included if necessary, to solve the 

effects selected in the computation case (such as heat 

equation or solid deformations) and not accounted for 

in the initialisation step.  

 

Results and discussion 
In this work, an application was developed to 

configure the computation cases and to obtain the 

postprocessing results easily. The operating conditions 

selected for the study are in Table 1 and the lubricant 

and solid properties are in Table 2. Both operating 

conditions and material properties are representative 

of industrial cases. Depending on the case 

investigated, these properties and operating conditions 

are modified accordingly to the case description.  

 
Parameter Value [unit] 

𝑢𝑡 10 [𝑚/𝑠] 
𝑤 40 000 [𝑁] 

Width 50 [𝑚𝑚] 
Length 60 [𝑚𝑚] 

Thickness 10 [𝑚𝑚] 
Wedge 10 [µ𝑚] 

Table 1. Reference case operating conditions 

 Parameter Value Unit 

Density 

parameters 

𝜌0 900  𝑘𝑔/𝑚3 

𝛽 6.4 · 10−4  𝐾−1 

𝑇0 293.15  𝐾 

Newtonian 

viscosity 

parameters 

(from Ehret 

et al.8) 

𝜇0 0.04   𝑃𝑎 · 𝑠 

𝛼 15 · 10−9   𝑃𝑎−1 

𝛾 0.042   𝐾−1 

𝜇𝑅 6.4 · 10−4   𝑃𝑎 · 𝑠 

𝑝𝑅 196   𝑀𝑃𝑎 

Non-

Newtonian 

parameters 

𝐺 20   𝑘𝑃𝑎 

𝑛 0.35    −  
𝑎 5    −  

Surfaces Perfectly smooth  

Solids 𝐸𝑡 , 𝐸𝑏 2.1 · 1011  𝑃𝑎 

 𝜈𝑡, 𝜈𝑏 0.3  − 

Table 2. Lubricant and solid properties 

 



a) Isoviscous and incompressible fluid 

The lubricant properties are here independent of 

pressure, temperature or shear stress. Moreover, the 

solids are rigid. Under these lubricant and solid 

assumptions, it is possible to derive an analytical 

solution (see Hamrock, Schmid and Jacobson11) to the 

plane slider bearing case. The results of this analytical 

model are plotted together with the numerical model 

results in Figure 8. The analytical solution can only 

provide a pressure distribution based on a given 

distance between the rigid bodies ℎ0, so a simple 

routine was used so that the load carrying capacity 

matches the load of the numerical case. The authors 

would like to specify that this is not a fitting routine as 

the analytical result is obtained independently from the 

numerical result. 

 
Figure 8. Film thickness and pressure - comparison 

between analytical (··○··) and numerical (―▪―) results 

Analytical and numerical results are in good 

agreement (relative difference < 2 · 10−6 % for both 

pressure and film thickness) and it validates the 

numerical precision under isoviscous and 

incompressible lubricant assumptions.  

Real life lubricants are more complex, and their 

behaviour must be accounted for to quantitatively 

predict the bearing life span or efficiency. Apart from 

the lubricant rheology, the thermal effects also have a 

significant role. It also important to notice that solids 

are neither smooth nor rigid: solid elasticity and 

surface roughness will be investigated. Moreover, this 

slider geometry is only one of the possible geometries. 

 

b) Piezoviscous and compressible fluid 

(reference case) 

Pressure influences viscosity and density. This 

influence often plays a significant role, especially at 

high hydrodynamic pressure. Here this influence is 

included, but the lubricant is still Newtonian and 

isothermal, and the solids are rigid. 

The present case will be considered as the reference 

case in the followings. 

 

Figure 9 shows that neglecting pressure dependence 

of viscosity and density (as in a) Isoviscous and 

incompressible fluid) leads here to underestimating 

the minimum film thickness by 1 µ𝑚 and the 

maximum pressure by 1 𝑀𝑃𝑎. 

 

 
Figure 9. Film thickness and pressure – comparison 

between reference case (―▪―) and the isoviscous and 

incompressible analytical solution (- - ○ - -) 

 
Figure 10. Film thickness and pressure – comparison 

between reference case (··◊··) and reference case with 

𝑢𝑏 = 20 𝑚/𝑠 (―▪―) 

c) Velocity 

The velocity plays a significant role on the bearing 

behaviour. The present case is like the reference case 

apart from the velocity (𝑢𝑏 = 20 𝑚/𝑠) and its 

influence is presented in Figure 10. Here, the 

minimum film thickness increased by about 5 µ𝑚 

comparing to the reference case, because of the 

velocity rise. The pressure distribution is hardly 

affected. However, the real influence of velocity can 

only be analysed with a temperature and shear stress 

dependant lubricant model. Indeed, the shearing 

energy dissipated in the lubricant film is ∝ 𝑤 ·
(𝑢𝑡 − 𝑢𝑏)2, and a shear rate increase leads to a large 

heat increase, a viscosity decrease and a resulting film 

thickness drop. 



d) Load 

The reference case is computed with a load of 𝑤 =
80000 𝑁. Figure 11 presents the film thickness which 

is reduced comparing to the reference case film. As 

expected, the pressure is larger than the one of the 

reference case.  

Similarly to the increased velocity case, the actual 

behaviour of the bearing under high loads can only be 

predicted with more complex lubricant models than 

the one used in the present case. 

 
Figure 11. Film thickness and pressure – comparison 

between reference case (··◊··) and reference case with 𝑤 =
80000 𝑁 (―▪―)  

e) Thermal effects 

As mentioned previously, thermal effects have a 

significant influence on the contact at large load and 

large velocity. Consequently, a severe reference case 

is defined, with 𝑢𝑏 = 20 𝑚/𝑠 and 𝑤 = 80000 𝑁. The 

other operating conditions and hypothesis are the same 

as the reference case. In Figure 12, the results of this 

severe reference case are compared with the results of 

the same case, but with the thermal effects included 

(obtained by heat equation computation fully coupled 

with Reynolds equation). 

Whereas the pressure distribution is lightly affected by 

the thermal effects, the minimum film thickness is 

divided by two when the thermal effects are included. 

This means that neglecting them leads to a significant 

overestimation of film thickness and therefore to the 

dramatic underestimation of wear and lifespan. 

 

f) Non-Newtonian lubricant 

Under high shearing conditions, the lubricant may 

exhibit a shear thinning behaviour. This means that the 

viscosity is reduced by the shear stress, which leads to 

a film thickness reduction (similarly to the thermal 

effects). In Figure 13, the severe reference case results 

are compared with the severe reference case results 

with the non-Newtonian effects included. 

Figure 13 shows that the shear thinning leads here to 

a film thickness reduction of about 4 µ𝑚. Again, 

neglecting the shear thinning behaviour may lead to 

hazardous predictions of the minimum film thickness. 

 

 
Figure 12. Film thickness and pressure – comparison 

between severe reference case with (―▪―) and without 

(··◊··) thermal effects 

g) Solid deformation 

When large pressures are encountered, the elastic 

properties of the solids cannot be neglected anymore. 

It is EHL. Indeed, the large pressures deform the slider 

gap and the fluid flow will be modified. Both the slider 

and the track are made of steel, with 𝐸𝑡 = 𝐸𝑏 =
210 𝐺𝑃𝑎 and 𝜈𝑡 = 𝜈𝑏 = 0.3. 

In Figure 14, the solid deformation sum is computed 

for the severe reference case, and its influence on 

pressure and film thickness is highlighted. Here, the 

pressure distribution is more asymmetrical with the 

solids deformation included than without them. 

Besides, the minimum film thickness is reduced by the 

solids deformations. This shows that under certain 

conditions, the solids deformation should be included 

for accurate film thickness predictions. 

 

 
Figure 13. Film thickness and pressure – comparison 

between severe reference case with (―▪―) and without 

(··◊··) non-Newtonian behaviour 



 
Figure 14. Film thickness and pressure – comparison 

between severe reference case with (―▪―) and without 

(··◊··) solid deformations included in the film thickness 

expression 

h) Surface texture  

Whereas smooth surfaces do not exist in real life, it is 

sometimes difficult to take them into account in 

tribology models. Indeed, their geometries are 

generally at a smaller scale than the contact width or 

length. The roughness is either desired (to trap wear 

particles, retain lubricant, improve lubricant 

replenishment) or undesired (often a result of the 

manufacturing process) as they reduce the minimum 

film thickness. A first approach is to add a sine 

function 𝑅(𝑥) = 𝐴0 · sin(𝐵0𝑥) to the film thickness 

expression. In the present stationary reference case 

computation, it means that the roughness is added to 

the top solid which velocity is nought.  

The results are presented in Figure 15, and the 

minimum film thickness is noticeably reduced by the 

roughness presence. The pressure is locally increased. 

This comparison shows that under certain conditions 

they should be included in the model. 

 

 
Figure 15. Film thickness and pressure - comparison 

between reference case with (―▪―) and without sine 

texture (··◊··) under the reference case operating conditions 

i) Slider geometry 

The slider geometry can be different. Instead of a plane 

slider bearing, the slider can be separated into an 

inclined plane together with a horizontal plane. This 

geometry limits the contact pressure at nought velocity 

(only dry contact pressure). This slider gap is 

presented in Erreur ! Source du renvoi introuvable.. T

he minimum film thickness is very similar to the one 

of the reference case, but the maximum pressure is 

slightly larger. The pressure distribution is also more 

symmetrical than the one of the reference case. 

 

 
Figure 16. Film thickness and pressure – comparison 

between two planes slider bearing (―▪―) and plane slider 

bearing (··◊··) under the reference case operating 

conditions 

Another solution to limit the contact pressure at 

nought velocity is the Rayleigh step bearing. The gap 

defined by the step bearing is defined in Figure 17. 

With the step bearing and in the reference case 

conditions, the maximum pressure is larger than the 

one of the plane bearing. The pressure distribution is 

also more symmetrical. 

 

 
Figure 17. Film thickness and pressure – comparison 

between plane slider (―▪―) and Rayleigh step bearing 

(··◊··) under the reference case operating conditions 

 



Conclusions 
Even if the contact understanding is a challenge, an 

appropriate modelling of the different phenomena 

allows for overcoming it. In the present document, the 

most common effects have been shortly presented and 

the main prediction mistakes attached have been 

introduced. The different cases computed show the 

great influence of each of the different effects. 

Selecting the ones to neglect and the ones to include is 

a difficult task. 

The present model does not propose new hypothesis 

but aims to demonstrate the existing challenges in 

EHL. To optimise the workflow a COMSOL 

Application was developed together with this model 

and COMSOL Server with an https secured connexion 

was used to solve the different cases on a distant high-

performance computer. 
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Appendix: Equivalent solid 
It is a common choice in the EHD domain to apply the 

equivalent body theory (see 12,13). As a result, only one 

body must be modelled. The equivalent Young 

modulus and Poisson ration are expressed as follows: 

𝐸𝑒𝑞 =
𝐸𝑏

2𝐸𝑡(1 + 𝜈𝑡)2 + 𝐸𝑡
2𝐸𝑏(1 + 𝜈𝑏)2

(𝐸𝑏(1 + 𝜈𝑡) + 𝐸𝑡(1 + 𝜈𝑏))
2  

𝜈𝑒𝑞 =
𝐸𝑏𝜈𝑡(1 + 𝜈𝑡) + 𝐸𝑡𝜈𝑏(1 + 𝜈𝑏)

𝐸𝑏(1 + 𝜈𝑡) + 𝐸𝑡(1 + 𝜈𝑏)
 

with 𝐸𝑏  and 𝐸𝑡 respectively the Young modulus of the 

bottom and top solid, and 𝜈𝑏  and 𝜈𝑡 the bottom and top 

Poisson ratio. 


