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Abstract: In a pioneering paper Bouddour,
Auriault and Mhamdi-Alaoui derive upscaled
expressions for the dispersion coefficients for
reactive flow in a porous medium using the
method of homogenization. The method uses
a periodic unit cell (PUC), which consists
for instance of a spherical grain in a cube,
but nothing prohibits defining more complex
PUC’s. Homogenization leads to a coupled
system of equations where the flow is de-
scribed by Stokes equation and the concentra-
tion fluctuation is described by a convection
diffusion source term equation. In the PUC
we have semi-periodic boundary conditions
(BC’s). The solution of the equation is not
trivial due to the source term and the BC’s.
The same equation arises in other upscaling
techniques for upscaled dispersion coefficients,
such as solving equations in periodic media
or REV averaging. We show that commer-
cial finite element software (COMSOL) can
be readily used to compute longitudinal and
transversal dispersion coefficients in 2-D and
3-D; this makes homogenization accessible to
the engineering practice. Details of the com-
plete numerical procedure are discussed in de-
tail. The results are for the first time com-
pared with experimental data of the dispersion
coefficient versus Peclet number; there is good
agreement. Adsorption enhances the longitu-
dinal dispersion coefficient.
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Introduction

Reactive transport in porous media plays an
important role in environmental hydrology,
petroleum engineering and agricultural engi-
neering. Our interest was triggered by the Ar-
senic remediation process for drinking water in
Bangladesh; if Fe2+ is deposited on the sand

grains it shields the As adsorbing FeIII ox-
ides and hence leads to arsenic production in
the drinking water wells [6]. Our interest is
in upscaling from the pore-scale to the core
scale (macroscopic dispersion) for the inter-
pretation of laboratory experiments. The dis-
persion term is implemented in the upscaled
equation by replacing the molecular diffusion
by a dispersion tensor D, which is the sum
of the isotropic-tortuosity corrected molecular
diffusion tensor DmI and the hydrodymamic
dispersion tensor Dd.

A relatively new upscaling method [11],
called homogenization, has the advantage with
respect to other upscaling techniques that it
does not need a closure relation for the struc-
ture of the transport terms [3] [13] [8] [5]. Ref-
erence [5] gives a more complete version of this
paper. Homogenization shares with Repre-
sentative Elementary Volume (REV) averag-
ing a precise formulation involving the order
of magnitude of the characteristic dimension-
less numbers [17]. Tardif d’Hamonville et al.
[15] was the first to develop a 3-D finite el-
ement code to solve the equations derived in
[3] numerically to find values of all the com-
ponents of the dispersion tensor as a func-
tion of the Peclet number. We compute the
longitudinal dispersion (sum of hydrodynamic
dispersion and tortuosity corrected molecular
diffusion), for a wider range of Peclet num-
bers. For this we use commercial finite ele-
ment software (COMSOL), but also other pro-
grams (e.g., FENICS) can be used. We give an
overview of the idea behind homogenization in
1, and mention the derived model equations in
Section 2. Section 3 deals with the numerical
implementation. Section 4 makes a compar-
ison between homogenization data and labo-
ratory experiments reported in the literature.
We end with some conclusions.

Excerpt from the Proceedings of the COMSOL Conference 2009 Milan



1 Procedure for homogenization

Consider a system of macroscopic (global
scale) dimensions with a characteristic length
L. The macroscopic domain consists of a col-
lection of periodic unit cells, on the micro-
scopic (local) scale with characteristic length
l. To ensure the separation of scales we need
that ε = l/L << 1. For reasons of illustration
we use a simple periodic unit cell (PUC) (see
Fig. 1). Inside the PUC fluid flows according
to Stokes law, using periodic boundary condi-
tions and using that the flow tangential and
normal to the grain surface Γ is zero.

The transport equations are non-
dimensionalized on inspection [14], where we
split all spatial differentiation into a contri-
bution on the local scale and on the global
scale. In this procedure L is the characteristic
length for global differentiation and l is the
characteristic length for local differentiation.
We obtain an equation with the usual dimen-
sionless numbers, e.g., the Peclet number and
ε. The magnitude of the Peclet number with
respect to ε will be determined. Then we
expand the dependent variables into contribu-
tions of decreasing significance with respect to
ε. After substitution the transport equations
will consist of a sum of terms each with a
different order with respect to ε. Each of the
terms with a specific order in ε constitutes an
equation that is separately satisfied. From this
the expressions for the upscaled parameters,
e.g., the dispersion coefficient are obtained.

1.1 Stokes equation

We assume that the flow in the ”void” space
is governed by Stokes equation, which can be
straightforwardly solved numerically to obtain
v = v (rs). As a result we find in each peri-
odic unit cell the same velocity distribution,
because in each PUC the flow is subjected to
the same potential gradient. The velocity does
not change on the global scale. Only local
velocity variations, i.e., within the PUC are
relevant. It is convenient to separate the di-
vergence ∇ into a global ∇b and a local ∇s

contribution. We notice that ∇b·v = 0 be-
cause of the periodicity assumption and hence
we obtain from the incompressibility condition
∇ · v = ∇b·v +∇s·v = 0

∇b·v = 0, and ∇s·v = 0 (1)

1.2 Solute transport

The convection diffusion equation inside the
PUC i.e. in Ωl can be written as

∂c

∂t
+ div (vc) = div (D grad c) (2)

where c is the molar Fe2+ concentration, v
the velocity field obtained from the solution
of the Stokes equation and D is the molecular
diffusion coefficient.

The boundary condition at the grain sur-
face in the absence of adsorption is written as

(−D grad c)n = v = 0 at Γ (3)

Periodic boundary conditions are used at the
boundaries of the PUC.

2 Upscaled equations

The procedure of homogenization leads to an
expression of the dispersion coefficients as fol-
lows

Dd = −D0Pe

ϕ

1
|Ω|

∫
Ωl

v ⊗ χ drs (4)

and

Dm =
D0

ϕ

ϕI +
ϕ

|Ωl|

∫
Ωl

grads ⊗ χ drs


(5)

where v is the dimensionless velocity field and
te inner product of χ with the global concen-
tration gradient grad c0 is the concentration
fluctuation in the unit cell. We use the no-
tation for the dyadic product v ⊗ χ in which
each component of one vector multiplied by
another component of the other vector forms
a matrix.

For the x-component of χ we can derive the
source, convection diffusion equation

− v̄x

R
+ divs (v(χx + xs))

=
1
Pe

divs grads(χx + xs) . (6)

with boundary conditions
1
Pe

(grads (χx + xs)) · n = 0 at Γ , (7)

where xs is the x-coordinate in the unit cell.
The concentration fluctuation χx is periodic in
the unit cell. Equations for the other compo-
nents of χ can be derived like-wise.



3 Numerical calculation of the
dispersion coefficient

In order to calculate the full dimensional hy-
drodynamic longitudinal dispersion and ef-
fective diffusion coefficients we need to com-
pute the first order concentration correction
χx (χy). We solve the problem, i.e., the Stokes
equation and Eq. (6) in 3-D using a Finite El-
ement Method software package. COMSOL
also allows to compute the volume integrals in
Eqs. (4), (5).

For reasons of easy comparison with ref-
erence [15] we have defined the geometry in
Fig. 1 for the PUC in 3-D. In each of the
eight corners of the cube, spheres, represent-
ing the grains, with radii of 0.583 or 0.510
have been drawn corresponding to porosities
of 0.242 and 0.446 respectively. The parts of
the sphere that fall outside the unit cube are
discarded, whereas the parts inside the cube
constitute the grains. The overlapping parts
of the spheres inside the cube belong to the
porous skeleton.

We apply semi-periodic boundary condi-

tions, i.e., periodic boundary conditions for
the faces that are not perpendicular to the flow
direction and semi-periodic boundary condi-
tions for the faces perpendicular to flow. Semi-
periodic boundary conditions means that, e.g.,
the concentration at one face is equal to the
corresponding concentration at the other face
augmented with the global concentration dif-
ference, which we take to be equal to one
across the PUC. The same procedure is ap-
plied for the pressure, but here also the ve-
locities are strictly periodic. The pressure
difference was chosen such that the average
dimensionless longitudinal interstitial velocity
vx is equal to 1/ϕ. In the periodic unit cell
consisting of the unit cube (ξ = 1), we take
the Peclet number as Pe = vxξ/D0, i.e. the
inverse of the diffusion coefficient times the
porosity D0ϕ. In the literature [2] the Peclet
number is usually defined as vdp/D0, where
the interstitial velocity v = u/ϕ and dp is the
grain diameter. For our choice of inscribed
radii (a = 0.51 or a = 0.583) this only leads to
a minor difference.

Figure 1: Part of the periodic unit cell (cube) filled with fluids left (a): Coarse Finite Element
mesh with radius of spheres at te corner a = 0.583 and right (b): finite element mesh for a = 0.510
The average x-velocity is equal to 1/ϕ.
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concentration fluctuation χx is periodic in the
unit cell. Equations for the other components of
χ can be derived like-wise.

3 Numerical calculation of
the dispersion coefficient

In order to calculate the full dimensional hy-
drodynamic longitudinal dispersion and effective
diffusion coefficients we need to compute the first
order concentration correction χx (χy). We solve
the problem, i.e., the Stokes equation and Eq.
(6) in 3-D using a Finite Element Method soft-
ware package. COMSOL also allows to compute
the volume integrals in Eqs. (4), (5).

For reasons of easy comparison with refer-
ence [15] we have defined the geometry in Fig. 1
for the PUC in 3-D. In each of the eight corners
of the cube, spheres, representing the grains,
with radii of 0.583 or 0.510 have been drawn
corresponding to porosities of 0.242 and 0.446
respectively. The parts of the sphere that fall

outside the unit cube are discarded, whereas the
parts inside the cube constitute the grains. The
overlapping parts of the spheres inside the cube
belong to the porous skeleton.

We apply semi-periodic boundary condi-
tions, i.e., periodic boundary conditions for the
faces that are not perpendicular to the flow di-
rection and semi-periodic boundary conditions
for the faces perpendicular to flow. Semi-
periodic boundary conditions means that, e.g.,
the concentration at one face is equal to the
corresponding concentration at the other face
augmented with the global concentration differ-
ence, which we take to be equal to one across
the PUC. The same procedure is applied for the
pressure, but here also the velocities are strictly
periodic. The pressure difference was chosen
such that the average dimensionless longitudi-
nal interstitial velocity vx is equal to 1/ϕ. In
the periodic unit cell consisting of the unit cube
(ξ = 1), we take the Peclet number as Pe =
vxξ/D0, i.e. the inverse of the diffusion coeffi-
cient times the porosity D0ϕ. In the literature [2]
the Peclet number is usually defined as vdp/D0,
where the interstitial velocity v = u/ϕ and dp is
the grain diameter. For our choice of inscribed
radii (a = 0.51 or a = 0.583) this only leads to a
minor difference.
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It turns out to be advantageous to use
the diffusion equation in the transient mode:
∂c/∂t + v · grad c = div (D grad c) + v̄x,
where we use c = χx + xs for the longitudi-
nal coefficients. Various values of D = 1

Pe are
used. For long times the solution converges
to the solution of the stationary reaction-
diffusion-convection equation.

To implement semi-periodic boundary con-
ditions for the concentration equation in
COMSOL, it appears to be necessary to choose
the appropriate Neumann precondition at the
inflow and outflow boundary; in this case
we implement the Convective Flux condition
(−D grad c) · n = 0 to ensure that the diffu-
sive flux or the concentration gradient is also
periodic. COMSOL can solve the Stokes equa-
tion as well as the convection diffusion equa-
tion in their conservative form. A Multigrid
preconditioner presolves the linear set of equa-
tions before COMSOL applies the Generalized
Minimal Residual Method (GMRES).

4 Results

For the 2-D example we use a simple square
array of cylinders, i.e., the PUC is a circle in
a square such that the porosity ϕ = 0.37. Fig.
2 also compares with experimental [2] and nu-
merical data cited in Table IV of [9]. The com-
parisons involve the dispersion in a 2-D peri-
odic medium of circles inside squares for a case
with porosity ϕ = 0.37. At the smallest reso-
lution we used 250 triangular elements and at
the highest resolution we used 4000 triangular
elements, with no significant change in the re-
sults. Edwards et al. [9] used 400 nine node
elements. As it turns out Edwards solves ex-
actly the same cell equation (6), but state that
they derive subsequently the dispersion coeffi-
cient from an equation derived by Brenner [4]
(based on a moment analysis)%

Dm + Dd =
1

ϕ|Ω|

∫
Ωl

∇χ⊗∇χ drs. (8)

The result of using the xx component of
Eq. (8) is shown in Fig. 2 as the thin drawn
line below the other data. It only gives good
results for very small Peclet numbers. How-
ever, the values in Table IV of [9] are exactly
reproduced for low Peclet numbers if we use
(the xx component) in Eq. (4) and Eq. (5)

instead of Eq. (8). Buyuktas and Wallen-
der [7] also use Eq. (6) and Eq. (4) and Eq.
(5) to obtain the dispersion coefficient in the
same way as in this paper. The data from
Eidsath [10] also quoted in Edwards [9] dis-
agree both with our calculations and the data
of Edwards. However, Eidsath used a 36 el-
ement mesh. At higher Peclet numbers, the
computed data by Edwards are higher than
the experimental data and our computed re-
sults. We are not able to find a reason for this
discrepancy.

Fig. 3 shows the 3-D results. The 3-D
simulation with the corner spheres of radii a =
0.510 (0.583) was carried out with 5832 (3128)
mesh points, with 27420 (14495) tetrahedal
Lagrangian quadratic elements. COMSOL
uses shlag(2,′c′) shape functions with integra-
tion order 4 and constraint order 2. A simu-
lation with 1731 (955) mesh points and 7746
(4068) elements gave results that deviated at
most 0.133% (0.288%). At low Peclet num-
bers the longtudinal coefficient is dominated
by the molecular diffusion. For the configura-
tion in Fig. 1a (1b) D/Do assumes values of
0.51 (0.69) . The measured value is D ∼ 0.7D0,
is only attained for the configuration shown
in Fig 1b. This configuration has a poros-
ity value ϕ = 0.446, close to many laboratory
tests (ϕ = 0.35− 0.45) . The computed results
show the same trends as the experimental re-
sults collected for instance in [2]. However,
a similar calculation for the transverse dis-
persion coefficients (not displayed here) shows
that the computed values are much too low.

Numerical calculations that include ad-
sorption of solute to the grain (see Fig. 4)
show in a 2-D example that adsorption (retar-
dation R = 10) enhances the longitudinal dis-
persion coefficient, but leaves the transverse
dispersion coefficient unchanged. Van Duijn
et al. [16] find a similar result. In agreement
with [1] we find an increasing dispersion coef-
ficient for increasing retardation. Indeed for
a Freundlich isotherm, the highest retardation
and hence the largest dispersion coefficient oc-
cur at low concentrations .

The discussion is finalized with a few words
about the practical relevance of the results in
this paper. The first important aspect is that
homogenization shows whether the proposed
upscaled equation derived in this paper can be
used for the interpretation of laboratory re-
sults. The main condition is that the Peclet



number on the PUC scale is of the order of
unity. For iron ions with molecular diffusion
coefficients in water of the order of 10−9 [m2/s]
this is clearly the case. For microbes with a
much lower diffusion coefficient such an as-
sumption is not correct and this has a con-
sequence for the upscaled convection-diffusion
equation for microbes. The second application
is that it is in principle possible to derive the
transport coefficients. The shortcoming of this
clearly manifests itself in the underestimate of
the transverse dispersion coefficient. Whether
this problem can be circumvented by defining
more complex PUC’s [9] is still an open re-

search question. As to the transport coeffi-
cients an important result is that absorption
enhances longitudinal dispersion, For the time
being, however, the enhancement effect ap-
pears to be too small to be of practical signif-
icance. Finally, macroscopic (pore-scale) dis-
persion cannot be disregarded in describing gi-
gascopic dispersion, because it consists of a re-
versible and irreversible contribution [12]. The
irreversible contribution is also determined by
pore-scale mixing. A challenge for future work
is to investigate whether homogenization can
be used to come to a partition between re-
versible and irreversible dispersion.

Figure 2: Comparison of the computed hydrodynamic dispersion coefficients (drawn line) for a 2D
model with experimental and numerical data of other authors. The squares are the experimental
data [2], the crosses are the data from [10] whereas the triangles are data from Edwards et al. [9].
The drawn curve is computed in this work for a simple square arrays of cylinders with ϕ = 0.37. The
thin drawn line below the other data uses the cell average of < cxcx > to estimate the dispersion
coefficient.

second application is that it is in principle pos-
sible to derive the transport coefficients. The
shortcoming of this clearly manifests itself in the
underestimate of the transverse dispersion coef-
ficient. Whether this problem can be circum-
vented by defining more complex PUC’s [9] is
still an open research question. As to the trans-
port coefficients an important result is that ab-
sorption enhances longitudinal dispersion, For
the time being, however, the enhancement ef-

fect appears to be too small to be of practical
significance. Finally, macroscopic (pore-scale)
dispersion cannot be disregarded in describing
gigascopic dispersion, because it consists of a re-
versible and irreversible contribution [12]. The
irreversible contribution is also determined by
pore-scale mixing. A challenge for future work
is to investigate whether homogenization can be
used to come to a partition between reversible
and irreversible dispersion.

Conclusions

• Homogenization is a useful method to ob-
tain upscaled equations. The method
leads to upscaled equations for the labo-
ratory scale that are less dependent on in-
tuition than upscaled equations obtained
with REV averaging.

• Explicit expressions for the dispersion ten-
sor are obtained, based on comparison to
the convective diffusion equation used for
contaminant transport. Commercial Fi-
nite Element Method software, e.g., COM-
SOL can be used to solve the unconven-
tional equations, the solution of which is

necessary to obtain quantitative results.

• The computed longitudinal dispersion co-
efficients as a function of the Peclet num-
ber show good agreement with experimen-
tal literature data.
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Figure 3: Longtudinal dispersion divided by molecular diffusion versus Peclet number. The Peclet
number is based on the interstitial velocity v = u/ϕ. The characteristic dimension is the size of the
unit cell. Dashed (dashed-dot-dot) line has unit cell as Fig. 1a (left) and the drawn (dashed-dot)
line as Fig. 1b (right). The triangles denote experimental points [2]

Figure 4: The effect of adsorption on the dispersion coefficient. With adsorption, i.e., the retarda-
tion factor R = 10, the longitudinal dispersion coefficient is higher.
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Figure 4: The effect of adsorption on the dispersion coefficient. With adsorption, i.e., the retardation factor
R = 10, the longitudinal dispersion coefficient is higher.

Conclusions

Homogenization is a useful method to obtain
upscaled equations. The method leads to up-
scaled equations for the laboratory scale that
are less dependent on intuition than upscaled
equations obtained with REV averaging.

Explicit expressions for the dispersion ten-

sor are obtained, based on comparison to the
convective diffusion equation used for contam-
inant transport. Commercial Finite Element
Method software, e.g., COMSOL can be used
to solve the unconventional equations, the so-
lution of which is necessary to obtain 4 quan-
titative results.



The computed longitudinal dispersion coeffi-
cients as a function of the Peclet number show
good agreement with experimental literature
data.
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