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Abstract: The silicon diaphragm is one of the 

most common structures in micro-electro-

mechanical systems (MEMS).  However, it is 

susceptible to creep deformation at elevated 

temperatures. This paper presents a transient 

finite element model which simulates the 

mechanical behavior of the micromachined 

silicon diaphragms at the temperature of 1173K 

(900°C). The constitutive equations proposed by 

Alexander and Hassen are employed in Comso 

Multiphysics. The results show that the larger the 

diaphragm radius, the larger the density of the 

moving dislocation is. There is good agreement 

between the model prediction and the experiment 

data for the diaphragms with a radius in the 

range of 1.5mm to 2mm. However, the model is 

not valid for the diaphragm with a radius of 

2.5mm. This is because the generated dislocation 

density is very high and slip resistance is not 

included in present model.  
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1. Introduction 
 

      Silicon diaphragms are one of the most 

common structures in micro-electro-mechanical 

systems (MEMS) [1].  For micromachined 

pressure sensors, the silicon diaphragms are 

widely used as sensing element to detect the 

magnitude of external pressure. Since high 

temperature pressure sensors are required for 

industrial, automotive and aerospace sensing 

applications, the load-deflection behavior of the 

silicon diaphragm at elevated temperatures is 

studied by experiment and is modeled using 

Comsol Multiphysics. 

 

Single crystal silicon is brittle at low 

temperatures, but at temperatures higher than 

550°C, the motion of the dislocations under an 

applied stress is thermally activated, thus silicon 

becomes ductile material [2]. Therefore, silicon 

diaphragms which are intended to sensing 

pressure at elevated temperature may suffer from 

plastic deformation (creep). Wherever applied 

stress exceeds the critical resolved shear stress 

(CRSS), the crystallographic slip of the 

dislocations occurs. The slip systems of silicon 

are along <011> directions on the dense atomic 

planes {111}. The number of dislocations 

increases rapidly due to Frank-Read source. 

Because of their low dislocation density, the 

dislocations do not interact with each others 

motion. It has been proposed that the magnitude 

of the plastic shear strain rate is governed by the 

dislocation density in the initial stage of the 

deformation by the Alexander and Hassen’s 

model [3]. After a large number of dislocations 

have been generated, the interaction of 

dislocations resists to the plastic flow. As a 

result, it is proposed that the slip resistance 

governs the plastic strain rate in the later stage of 

the deformation [4].   

 

The constitutive model proposed by Alexander 

and Hassen is universally used for the study of 

the elevated temperature behavior of silicon and 

other semiconductors [5] [6] [7]. The model uses 

coupled equations to describe the evolution of 

the dislocation density. The plastic strain rate 

and dislocation multiplication are related to the 

temperature and the applied stress. The model 

has been proved to be valid over a stress range of 

10MPa to 120MPa and a temperature range of 

900K to 1200K [5].  

 

This work presented here is focused on the 

elevated temperature behavior of the silicon 

diaphragm in the initial deformation stage. First, 

the experiment to characterize the deformation of 

micromachined silicon diaphragms is presented. 

Second, the basic constitutive equations used in 

the Alexander and Hassen’s model are briefly 

recalled. The transient finite element model built 

in COMSOL Multiphysics is then described 

including the material parameters. In section 4, 
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the dislocation density is investigated using the 

model as a function of the diaphragm radius. The 

predicted diaphragm deformations are compared 

with experimental results. The strengths and the 

limitations of the present model are discussed in 

the conclusion section.  

 

2. Experimental procedure 

 
Figure 1. Schematic of cross-sectional view of the test 

sample. 

 

The schematic of the sample is shown in 

figure 1. The silicon diaphragm is clamped to the 

silicon substrate. Because the cavity is sealed in 

vacuum, the diaphragm deflects toward substrate 

under atmospheric pressure. The thickness of the 

diaphragm is 50 µm. The size of the silicon 

diaphragms is determined by the radius of the 

cavity which is in the range of 1.5mm to 2.5mm. 
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Figure 2 Process flow of the test sample 

 

The test samples were manufactured using 

MEMS technology. The fabrication process is 

shown in figure 2. The silicon wafers are (100) 

oriented and are doped with boron. In order to 

form the cavity, a prime silicon wafer was first 

etched by deep reactive ion etching, as shown in 

figure 2 (a). Then the prime silicon wafer was 

bonded with a BESOI wafer using silicon fusion 

wafer bonding. Figure 2 (b) shows the schematic 

after wafer bonding. The test samples were made 

after the handle layer and the silicon dioxide 

layer of the BESOI wafer were removed by 

using KOH and HF wet etching separately, as 

illustrated in figure 2 (c). 

 

The surface profiles of the test sample under 

atmospheric pressure were measured using a 

white light interferometer. Then the samples 

were subjected to annealing in a tube furnace. As 

illustrated in figure 3, the furnace temperature 

rose from 873K (600°C) to 1173K (900°C) with 

the ramp-up rate of temperature 5K/min 

(5°C/min). Then the annealing temperature was 

maintained at 1173K (900°C) for 1 hour.  After 

that, the furnace was cooled down gradually to 

873K (600°C) with the ramp-down rate of 

temperature -5K/min (-5°C/min). In order to 

induce stress for creep, nitrogen gas at 

atmospheric pressure was applied during 

annealing. After annealing, the surface profiles 

were measured again under atmospheric pressure 

at room temperature.  

 

 

 
Figure 3. Furnace temperature as a function of time 

 

3. Constitutive equations 

 
Alexander and Hassen’s model (AH model) 

assumes that the distribution of the dislocation is 

initially uniform in the whole sample [3]. The 

plastic shear strain rate, which is related to the 

motion of the mobile dislocations, can be 

expressed as: 
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where ρ is the dislocation density, b is the 

Burgers vector magnitude, v0 is a reference value 

for dislocation velocity, Q is the an activation 

energy, k is the Boltzmann constant, T is the 

absolute temperature in Kelvin, τ0 is a reference 

stress, m is a strain rate hardening exponent, and 

τeff is the effective stress given by: 

ραµττ beff −=                                         (2) 

where τ is the equivalent shear stress, α is a 

constant and µ is a shear modulus. The second 

term at the right hand side of equation (2) 

represents the internal stress produced by the 

interaction of the dislocations.  

 

    The evolution equation for the dislocation 

density is given by:  
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where K is a multiplication rate constant. The 

dislocation multiplication rate is related to the 

magnitude of the plastic strain rate and the 

effective stress.  

 

    The viscoplastic strain rate tensor is 

proportional to the shear strain rate. 
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where σe is the von Mises effective stress, Sij is 

the deviatoric stress tensor. The viscoplastic 

strain rate tensor for two dimensional 

axisymmetrical problem can be expressed as: 
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The total strain rate is given by  
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where 
el

ijε& is the elastic strain rate and 
th

ijε is the 

thermal strain rate.  

 

4. Use of COMSOL Multiphysics  
 

The model simulates the displacement field of 

the silicon diaphragm using Stress-Strain 

application mode of MEMS Module in axial 

symmetry (2D). Figure 4 shows the schematic 

drawing. The atmospheric pressure is applied on 

the top of the silicon diaphragm. When 

calculating the elastic deformation, the 

boundaries of the silicon substrate are considered 

as fixed boundaries. However, the sample is free 

to expand in the furnace during annealing. As a 

result, the stress due to thermal expansion is 

ignored in the model. Silicon is anisotropic 

material which has an orientation-dependent 

modulus of elasticity. The equivalent values for 

(100) orientated silicon are applied. The Young’s 

modulus and Poisson’s ratio are set to 151 GPa 

and 0.1615, separately [8].  

 

 
Figure 4.  Schematic drawing of the silicon 

diaphragm with fixed edge 

 

    The plastic strain rate and the effective stress 

are defined in the scalar expressions. The 

Burger’s vector b is 3.83×10
-10

 m. The activation 

energy Q is 3.47×10
-19

J. Parameter m is 0.9. The 

dislocation velocity for boron doped silicon is 

only slightly smaller than that in high purity 

silicon. The magnitude of the reference 

dislocation velocity is 6.0×10
3
 m/s for 60 °C 

dislocations and is 7.0 ×10
3 

m/s for screw 

dislocations under a shear stress of 20 MPa [9]. 

Therefore, an average value of 6.5×10
3
 m/s is 

used for v0. Equation 1 holds only when the 

effective stress τeff is positive. Therefore, τeff  is 

obtained at the region where τ>αµb. The 

constant α is 2. The shear modulus µ is 64 GPa. 

 

Two PDE general form modes are used to 

compute the dislocation density ρ and the 

viscoplastic strain ε
vp

. There are a few grown-in 

dislocations in single crystal silicon. The initial 

dislocation density ρ0 is estimated as 2×10
7
/m

2
. 



The evolution of dislocation density with time is 

mainly controlled by the multiplication rate 

constant K. The PDE modes are coupled to the 

Stress-Strain application mode. According to 

equation (6), the viscoplastic strains should be 

excluded from the total strains in the expressions 

for the elastic stresses of equation system. Then 

the displacement obtained from the Stress-Strain 

application mode represents both plastic and 

elastic deformation.  

 

5. Results and Discussion 

 
5.1 Dislocation density 

 
 

Max

 
Figure 5. The dislocation density distribution after 

annealing (radius=1.75mm) 

 

 
Figure 6. Von Mises effective stress of the diaphragm 

under the atmospheric pressure before annealing 

(radius=1.75mm) 

 

The density of moving dislocations 

influences the mechanical behaviour of silicon. 

Figure 5 predicts the distribution of the 

dislocation density in the silicon diaphragm with 

a radius of 1.75mm after annealing. The 

dislocation multiplication rate is very low at the 

region close to the middle plane of the 

diaphragm. The dislocation densities of about 

3×10
8
/m

2 
are found at the upper and lower 

surface near the diaphragm edge as illustrated by 

the light blue color in the figure. The maximum 

dislocation densities of about 7.15×10
8
/m

2 
are 

concentrated in a small region at the lower 

corner near the edge of the diaphragm. This 

results from the stress concentration at the round 

corner, as shown in figure 6. The maximum von 

Mises effective stress in the small region is 

123MPa. This value is much higher than that of 

about 80MPa in the region nearby.  

 

    Using the same initial settings, the model was 

run for various diaphragm semidiameter. The 

dislocation density distributions near the 

diaphragm edge are shown in figure 7. The 

results indicate that the larger the diaphragm 

radius, the larger the maximum dislocation 

density is. This is because large diaphragm 

induces high von Mises effective stress near the 

diaphragm edge. Thus the plastic shear strain 

rate in the region is high accordingly.   

 
(a) Radius=1.5mm

Max

 
 

 

(b) Radius=2mm

Max

 



 
(c) Radius=2.5mm
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Figure 7 The dislocation density distribution after 

annealing at the region near the diaphragm edge 

(deformed geometry) (a) Radius=1.5mm; (b) 

Radius=2mm; (c) Radius=2.5mm.   

 

 
Figure 8 The deformed geometry at the diaphragm 

edge (Radius=2.5mm). The positive dislocation 

density is illustrated by the red color while the 

negative dislocation density is illustrated by the blue 

color 

 

    The maximum dislocation density for the 

diaphragm with a radius of 2.5mm is about 

1.32×10
10

/m
2 

as shown in figure (c). Since the 

dislocation density is very high, the dislocations 

generated on different slip systems begin to 

interact with each other, thus making the plastic 

deformation much difficult. The simulated 

results show that the dislocation density becomes 

negative at the region close to the middle plane, 

as illustrated by the blue color in figure 8. In 

fact, the dislocation density at the blue region 

should be very close to the initial value. Because 

the stress near the middle plane is very low, the 

dislocation multiplication rate could be very low 

according to equation 3, or equal to zero if 

τ<αµb. The negative dislocation density from the 

simulation results is caused by the convergence 

problem of the FEA model due to the highly 

non-linear material properties. In order to 

prevent numerical overshoot in the value of 

dislocation density, a refined mesh at the 

location with high stress concentration is 

applied. The absolute value of the dislocation 

density is used for equation (2) in order to avoid 

the root of a negative.   

 

5.2 Diaphragm displacement 

 

 
Figure 9. The evolution of the maximum 

displacement with time (radius=1.75mm) 

 

 
Figure 10. The deformation of a silicon diaphragm 

after annealing (radius=1.75mm) 

 

     The main interest in the diaphragm behavior 

for the micromachined pressure sensor 

application is the diaphragm deformation. The 

evolution of the maximum displacement of the 

diaphragm with a radius of 1.75mm is shown in 

figure 9. The initial displacement is induced by 

the atmospheric pressure. The plastic shear strain 

rate increases with temperature according to 



equation (1). Therefore, the creep process is 

much faster at 1173K (900°C) than that at the 

temperature ramp.  The deformation of the 

silicon diaphragm after annealing is shown in 

figure 10. The maximum displacement is 

17.28µm at the centre of the diaphragm. 
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Figure 11. The comparisons of experimental data and 

model prediction for the diaphragm displacement (a) 

before annealing (b) after annealing.  

 

Figure 11 illustrates the comparisons between 

the experimental displacement data and the 

prediction from the AH model for various 

diaphragm radius. It can be seen that the 

simulated deformation match well with the 

measured data for the diaphragms with a radius 

of 1.5mm, 1.75mm and 2mm. Because the effect 

of the dislocations interaction on the plastic 

deformation is not included in the model, the 

predicted maximum displacement of 318.19µm 

is much larger than the measure data of 110 µm 

for the diaphragm with a radius of 2.5mm. 

 

6. Conclusion 
 

     A finite element model is presented in this 

paper to predict the mechanical behavior of 

micromachined silicon diaphragms at 900°C in 

the initial deformation stage. The model is based 

on the constitutive equations proposed by 

Alexander and Hassen.  This model uses two 

PDE general form modes coupled with the 

stress-strain application mode. The plastic strain 

is determined by the plastic shear strain rate, 

which is related to the evolution of the 

dislocation density. The dislocation density 

distribution and the diaphragm displacement are 

obtained for each diaphragm size. The predicted 

results are in agreement with the measured data 

for the diaphragms with a radius in the range of 

1.5mm to 2mm. The model is not valid for the 

diaphragm with a radius of 2.5mm since the 

generated dislocation density is very high, and 

the slip resistance should be considered. Current 

experiment condition allows checking the 

simulated displacement by the experiment. 

However, the creep deformation is dependent on 

the velocity and the density of the moving 

dislocations. Therefore, it is necessary to check 

the dislocation density in the diaphragm after the 

samples were exposed to annealing. At the same 

time, the model assumes that the material is 

homogenous and the deformation is uniform. 

Therefore, the model could be improved if the 

plastic deformation on each slip system is 

concerned.  
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