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Introduction: Phase Change Heat Transfer

Various other applications include:

Coating, Plating, Cooling, Separation and Reaction, Adhesion, Boiling and 
Condensation, Fuel Cell, Gas Sensor (porous coatings), Heat and Mass Transfer 
Operations & Self-Assembly.

The efficient acquisition and rejection of heat at very high heat fluxes (kW/cm2) 
requires synergistic advances in heat transfer materials, heat transfer surfaces, and 

heat transfer devices 

Electronics cooling

Photonics cooling

Space & Aviation

Solar Energy
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Evaporation from Transition Region

Transition region controls evaporation. Goal is to maximize its extent.
− Accurate modeling will enable us to engineer optimal surfaces

Heat Flux

Evaporation occurs in the region which has the lowest total resistance to heat 
transfer.
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Experimental System - Heat Pipes

Photograph of ModuleISS CVB Module

• Partially filled cell forms a Constrained Vapor Bubble (CVB) design.  
• Meniscus is present at corners where surface and the base meet
• Forms the basis for a fundamental experiment in interfacial phenomena
• Can be operated isothermally or driven by a temperature gradient
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Reflectivity/Interferometry Technique

Adsorbed Film Meniscus
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G (x) =

G(x) − Gmin (x)
Gmax (x) − Gmin (x)

Varying thickness of the meniscus 
produces an interference pattern Interference pattern analyzed to obtain 

gray value at each pixel

  
RL(x) =

α +β cos2φl (δ )
κ +β cos2φl (δ )
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Nonisothermal State Meniscus - Octane 

Octane (8-C) used as a working fluid
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Fluid Flow Model

• Lubrication approximation used to model fluid flow.

• Navier slip  (solid-liquid interface) and Marangoni 
shear (liquid-vapor interface) boundary conditions 
applied

• Mass balance provides the evaporating mass flux at each pixel location.

• Temperature dependence of fluid properties accounts for the capillary, Marangoni and van 
der Waals forces. 

 
µ

d2u
dz2 =

dPl

dy
 
z = 0, us = β

du
dz

z = 0

  
z = δ y( ), τ zy =

dσ lv

dy

 Pl(y) = Pv − σ (y)K(y) +Π(y) 

  
Γ = ρlu dy

0

δ

∫
  
′′q = − h fg

dΓ
dy
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Heat Transfer at the Contact Line
• Heat transfer at the contact line was modeled using a Kelvin-Clapeyron approach.

• Since the pressure and difference can be written in terms of the film thickness, and 
the temperature difference is measured or set, the final equation can be written as a 
4th order differential equation for the film thickness, δ.

• Boundary conditions set the film thickness and curvature at both ends of the domain.
– These conditions are established from experimental observations.
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Simulation Results
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• COMSOL simulations were performed 
by splitting the 4th order equation into 
two 2nd order equations.

– Splitting allowed for more control 
over boundary conditions.

– Limited us to steady-state 
simulation.

• We were primarily interested in whether 
the model could simulate the curvature 
profiles we observe experimentally.

• Peak in curvature only occurs for small 
values of the adsorbed film thickness 
corresponding to high values of the 
disjoining pressure.

• Steep curvature gradient required to 
pump liquid into the transition region for 
evaporation.
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Simulation Results – Octane Low Heat Input
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• COMSOL simulation was able to 
reproduce the experimental data 
from an octane meniscus.

• The incorporation of 
hydrodynamic slip was necessary 
to match both the position of the 
curvature peak and the spread of 
the peak.

• Peak height is controlled by the 
thickness of the adsorbed film 
ahead of the contact line.  



COMSOL User's Conference, Boston 11

Simulation Results - Octane & Pentane
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• COMSOL simulation was applied to an 
octane meniscus at a higher heat flux 
and a pentane meniscus.

• Simulation was able to successfully 
reproduce the curvature profiles for both 
fluids.

• Adsorbed film thicknesses are lower 
than those measured experimentally, but 
the trend reproduces experimental 
observations.

– Pentane adsorbed film thicknesses 
are much larger than octane.

• Slip lengths are not unreasonably large, 
but more experimental work is needed 
to determine if they exist.
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Conclusions
 COMSOL model was successfully able to reproduce experimental observations

— Model was able to match both the film thickness and curvature profiles for octane and 
pentane menisci.

— Model results provided the correct trend for both the adsorbed film thickness as a 
function of heat input and also the adsorbed film thickness as a function of liquid 
Hamaker constant.  Adsorbed film thicknesses were smaller than those measured 
experimentally.

— Model results suggest that hydrodynamic slip is required to successfully model the 
evaporation of thin films.  

 Meniscus model improvements 

− Verify the requirement for a slip length.

− Extend model to cover the entire meniscus, not just the field-of-view of the experiment.

− Extend model to handle transient situations.  Focus on recession during evaporation and 
meniscus oscillation, both of which have been observed experimentally.
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Hamakar constant, Lifshitz Theory
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