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Context

• Hydrogen Embrittlement (HE)          premature failure of structures 

Cracks
Blisters

Cracks

• Hydrogen transport (Diffusion) is one of the important parameter of HE

• Studies about hydrogen diffusion in steels are often implemented using 
permeation tests. p

• Hypothesis: the conditions of diffusion are established beneath the entry 
side where the concentration of hydrogen C0 is supposed to be constant
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side, where the concentration of hydrogen C0 is supposed to be constant.



Context

P bl i l th it id h th• Problem: a passive layer on the exit side can have consequences on the 
experimental results: 
– Diffusion curves correspond to a multilayered system with two different 

materials and their own diffusion coefficient D (D for the steel and D for thematerials and their own diffusion coefficient D (D1 for the steel and D2 for the 
oxide layer). 

– Only an apparent diffusion coefficient Dapp can be determined experimentally.

Steel Oxide
C0=cst

Diffusion  D1 D2

• Our Goal: Analyze the influence of the oxide layer on the permeability of
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• Our Goal: Analyze the influence of the oxide layer on the permeability of 
hydrogen.



The electrochemical permeation test : 
Theory

Steel Oxide

Detection Cell

NaOH

Steel Oxide

Charging Cell

H2SO4

Anodic Polarisation

H H+ +

Diffusion  D1 D2Cathodic Polarisation

2H+ + 2e- → H2 Hads →  H+ + e-

Habs →  Hads

2H + 2e →  H2

Hads →  Habs
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The electrochemical permeation test : 
Experimental set up

Ch i C llCharging Cell Detection Cell

Sample

H
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Diffusion : Fick’s Laws

Fick's laws describe diffusion into the multilayered system assuming that there is 
no hydrogen trapping and the diffusion is unidirectional:
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Two analytical solutions of Fick’s laws are employed to fit the diffusion 
phenomenon when the hydrogen concentration is supposed to be constant 
beneath the entry side C=C0 and equals to zero on the exit side C=0:  
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The electrochemical permeation test : 
Simulation

C CS
Boundary conditions

Symmetry

Thickness  e1 e2

C0

C0=5 mol/m3,
CS=0 mol/m3.
e1=1mm

STEEL OXIDE

e1

Two types of steels:
F iti D 1 10 8 2/

D1 D2

- Ferritics D1=1.10-8 m2/s
- Martensitic D1=7.10-10 m2/s.

Two thicknesses
- e2 = 100nm,
- e2 = 500 nm.

Symmetry
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Results: Evolution of the permeation 
curves 

Th d f th fl R di i i h d it i h i ibl f• The decrease of the flux as R diminishes, and it is much more visible for 
the thicker layer. 
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Results: Evolution of Dapp
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Results: Evolution of <C>

5,0C ( l/ 3)

<C>, the average concentration, depends only on R and the thickness of the oxide layer. Up to R=0.01, the 
variation of Dapp is insignificant and would correspond to the “real” diffusion coefficient of the substrate (D1).

C

4,5

5,0<C> (mol/m3)
ferritic steel
martensitic steel

C0

0

2
CC 

4,0

e2 = 500nm

Cs=0
2

3,0

3,5

C0

C1

2,5

e2 = 100nm

2

1

oxide

t l

D DR
D D

 

C1

0 1

2
C CC 

 

COMSOL Conference, October 14th-16th 2009, Milan, Italy. xfeaugas@univxfeaugas@univ--lr.frlr.fr

2,0
1,0E-04 1,0E-03 1,0E-02 1,0E-01 1,0E+00

R=D2/D1 1steelD D
Cs=0



Results: Extrapolation

The oxide layer could be as thin as 2.8nm.

By fitting the obtained curves (<C> vs R and D vs R) we were able to acquireBy fitting the obtained curves (<C> vs R and  Dapp vs R), we were able to acquire 
their expression:
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Results: fitted curves 

8 0E 10D ( ²/ ) 5 0

Evolution of the fitted curves of Dapp and <C> in function of R
for a martensitic steel for e2=10nm 
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The smaller the oxide layer the bigger the difference between D1
(substrate) and D2 (oxide) can be without altering neither Dapp nor <C>. 



Conclusions

• Exhibit the relationship between the oxide layer characteristics and the 
apparent hydrogen diffusion. 

• Dapp and <C> rely on both the thickness and the diffusion coefficient of the 
oxide layer. 

• The thinner is the layer, the smaller is the error committed on the diffusion 
coefficient of the substrate. 

• FEM calculations  using Comsol Multiphysics offer the opportunity to 
correct experimental data and the evolution of true diffusion coefficient.

• Perspectives: Studying the effects of trapping of hydrogen
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Thank you for your attention

COMSOL Conference, October 14th-16th 2009, Milan, Italy. xfeaugas@univxfeaugas@univ--lr.frlr.fr




