Presented at the COMSOL Conference 2009 Boston

A Manufacturing Technology Center of Excellence

Implementation of a Paraxial Optical Propagation Method for Large Photonic Devices

James E. Toney Penn State Electro-Optics Center October 8-10, 2009

Outline

- Computational Limitations of EM Propagation Modes
- Review of Beam Propagation Methods
- Implementation of BPM-Like Mode in Comsol
- Representative Results

EM Modes Require Mesh Size <<λ

PENNSTATE

Beam Propagation Method

• Assume steady-state (time harmonic) oscillation

 $U(\mathbf{r},t)=U(\mathbf{r}) e^{-i\omega t} \rightarrow \nabla^2 U + k^2 U = 0 \quad (k=2\pi n/\lambda)$

• Assume propagation is primarily along the z-axis

 $U(\mathbf{r}) = u(\mathbf{r}) e^{ik0z} \rightarrow \nabla^2 u + 2ik_0 \partial u / \partial z + (k^2 - k_0^2) u = 0$

• Assume that the field varies slowly along the z-axis ($\partial^2 u/\partial z^2 \sim 0$)

$$\partial u/\partial z = i/2k \left[\nabla_{xy}^2 u + (k^2 - k_0^2) u \right]$$

= in₀/(2k₀n) { $\nabla_{xy}^2 u + k_0^2 [(n/n_0)^2 - 1] u$ }

- Choose a form for the input field
- Field can then be "propagated" in the z-direction

Applications of BPM

- Good for relatively large, waveguide-based devices
 - Couplers, splitters, interferometers, array waveguide gratings
- Not as good for high-index contrast systems
- Cannot handle systems with arbitrary propagation directions:
 - Photonic crystals (photonic band gaps)
 - Ring resonators
 - Tight bends
- Cannot do frequency mixing/nonlinear effects

BPM Example : 3 dB Coupler

PDE Implementation of BPM-Like Mode

Recall the basic paraxial wave equation:

 $\nabla^2 u + 2ik_0 \partial u / \partial z + k_0^2 [(n/n_0)^2 - 1] u = 0$

[No assumption of $\partial^2 u / \partial z^2 \sim 0$ necessary]

Subdomain Settings - PDE, C	oefficient Form	(c)	2		
Equation					
⊽·(-c∇u - αu + γ) + au + β·∇u	i = f				
Subdomains Groups	Coefficients In	nit Element Weak C	olor		
Subdomain selection	PDE coefficients				
1	Coefficient	Value/Expression	Description		
2	с	-1 -1	Diffusion coefficient		
	а	k0^2*((n/n0)^2-1)	Absorption coefficient		
	f	0	Source term Mass coefficient		
	ea	0			
	da	0	Damping/Mass coefficient		
Group:	α	0 0	Conservative flux convection coeff. Convection coefficient Conservative flux source term		
Select by group	β	0 2*i*k0			
Active in this domain	۷	0 0			
		ок	Cancel Apply Help		

Geometry for 2D BPM-Like Mode

Electro-Optics Center

PENNSTATE

Specification of Refractive PENNSTATE **Index Distribution Electro-Optics Center**

Subdomain Expressions				×
Subdomain selection	blaura	F	11-3	_
	IName	Expression		
	n	1.4+0.01*(x<2.5e-006)*(x>-2.5e-006)*(y<0.000		
2	1.4+0.01*(x<2.5e-006)*(x>-2.5e-006)*(y<0.0001)			
				1
				1
				1
				1
				1
-				1
		•		1
Select by group				-
	-	1		

	Name	Expression	Unit
	n	1.4*(1+i*exp(100000*(-6e-005+x))+i*exp(-10	[]
2		1.4*(1+i*exp(100000*(-6e-005+x))+i*exp((-100000*(6e-005+x))+i*
Select by group			
2			•

BPM-Like Mode Allows a Much Coarser Mesh

Electro-Optics Center

PENNSTATE

Examples of 2D Models

Electro-Optics Center

PENNSTATE

Directional Coupler

PENNSTATE

Multi-Mode Interference Splitter

According to theory, two-fold image occurs at L~400 μm for symmetrical excitation
 Illustrates that the paraxial model (like BPM) accounts for reflections at moderate angles

PENNSTATE

Beam Coupling via a Circular Microlens

High index contrasts makes this problem more challenging
Reduced mesh was used (~0.45 λ)
Field in low-intensity regions is somewhat grainy
Focusing distance (~200 μm from center) agrees fairly well with focal length from geometrical optics (175 μm)

PENNSTATE

Gaussian beam input

Scalar Paraxial Mode with Axial Symmetry

Scalar Wave Equation in 2D, Cylindrical Coordinates:

 $\partial u^2 / \partial z^2 + (1/r) \partial (r \partial u / \partial r) / \partial r + 2ik_0 \partial u / \partial z + k_0^2 [(n/n_0)^2 - 1]u = 0$

Subdomain Settings - PDE, Co	efficient Form	(c)		≍ z1	
Equation				Propagation	
$\nabla \cdot (-c \nabla u - \alpha u + \gamma) + a u + \beta \cdot \nabla u =$	= f				in single-
Subdomains Groups	Coefficients In	it Element Weak C	olor		mode fiber
Subdomain selection	PDE coefficien	ts			
1	Coefficient	Value/Expression	Description		
2	с	-1	Diffusion coefficient		
	а	k0^2*((n/n0)^2-1)	Absorption coefficient		
	f	0	Source term		
	e _a	0	Mass coefficient		
	d _a	0	Damping/Mass coefficient		
Group:	α	0 0	Conservative flux convection coeff.		
E Select by group	β	1/(x+x0) 2*i*k0	Convection coefficient		
Active in this domain	۷	0 0	Conservative flux source term		_
Small offset (<	<1 μm)	ок	Cancel Apply Help		 I → 15
to help stabilit	V				15

Conclusions

- BPM-Like mode can be implemented easily in Comsol via a PDE mode
- Enables a much coarser mesh and therefore larger devices to be simulated
- Accounts for interference, evanescent wave coupling, refraction, glancing reflections, but not back reflections
- Can be integrated with thermal, RF and strain effects for complex devices

Thank You!

James E. Toney, Ph.D.

Research Engineer, Fiber Optics, Photonics and Engineering Division

Penn State University Electro-Optics Center

222 Northpointe Blvd.

Freeport, PA 16229

jtoney@eoc.psu.edu

www.electro-optics.org