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DC plasma torch and modeling 

inflow 

outflow 

 Direct currents (DC) arc plasma torches represent the primary 
components of thermal plasma processes (plasma spraying, metal 
welding and cutting, waste treatment, biogas production, etc.).
  

 In a non-transferred arc plasma torch, an electric arc can be 
glowed by applying a direct current (DC) between the cathode and 
anode, both placed inside the torch.  

 

 Then, the plasma is obtained by heating, ionizing and expanding a 
working gas, flowing into the torch upstream of the cathode. 

 

 Due to the cooling of the anode, the gas close to the anode surface 
is cold, electrically no conductive, constricting the plasma. 
       

                    gas temperature: 
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DC plasma torch and modeling 

inflow 

outflow 

The modeling of the DC arc plasma torches is extremely challenging: 

 

 plasma constituted by different species (molecules, atoms, ions 
and electrons)   

 several coupled phenomena due to the interaction between 
electric, magnetic, thermal and fluid flow fields 

 highly nonlinear  plasma flow, presence of strong gradients and 

chemical and thermodynamic nonequilibrium effects  
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Physical model  

 

 Two different DC plasma 
torches are modeled as 
2D regions; the plasma 
flow is assumed 
axisymmetric and in 
steady state. 

 

 The working gas is argon 
for torch 1 and nitrogen 
for torch 2; copper is the 
material both of the 
anode and the cathode. 

 

 A free vortex  flow is set 
at the inlet. 
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Physical model: simplifying assumptions  
 

 

• The plasma is modeled by using the magnetohydrodynamics equations  and  considered as a 
weak compresible gas (Mach number < 0.3). 

• We assume conditions of local thermodynamic equilibrium (LTE), then the electrons and 
heavy particles temperatures are equal. The plasma electric conductivity σ is very low for 
temperatures T below a critical value (e.g. near the cooled anode wall of the torch), hence 
the electric current might be not guaranteed.  

• To ensure the electric flow in the gas region, an artificial minimum value of electrical 
conductivity is set up:  

       a) σmin = 8000 S/m in the whole fluid region 

       b) σmin = 8000 S/m in a thin region between the cathode and anode  
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Physical model: simplifying assumptions (cont.)  
 

 
 We do not consider either the formation of the electric spot on the anode surface and        

the arc reattachment process on the same anode (in 2D the electric spot is annular, while 
the  arc reattachment is strictly a transient phenomenon). 

 The plasma is considered optically thin and a net emission coefficient is used for the heat 
transferred by radiation mechanisms. 
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Equations:  electric currents, magnetic fields, heat transfer and laminar flow 

 
The modeling of the DC arc plasma torches is implemented in  

Comsol® by using the physics of the following modules: 

 

-  Plasma module (Equilibrium Discharges Interface)  

 

-  AC/DC module (Electric currents, Magnetic fields) 

    rounded cathode tip, gas and anode 

    using the vector magnetic potential A : 

     and the electric potential V  

 

-  Heat Transfer module (Heat transfer in fluids/solids) 

    cathode, gas and anode 

     

-  CFD module (Laminar flow) 

    argon or nitrogen 
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Equations:  multiphysics couplings  

 

Moreover, the coupling phenomena of the plasma flow in the DC torch  

are represented by setting in Comsol ® :  

 

- plasma heat source          (electric   heat) 

- static current density component       (electric   magnetic) 

- induction current density      (magnetic   electric) 

- Lorentz forces        (magnetic   fluid flow) 

- boundary plasma heat source (rounded cathode tip) (electric   heat) 

- boundary plasma heat source (anode) (electric   heat) 

- temperature couplings  

      (heat   electric, heat  magnetic, heat   fluid flow) 
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Boundary conditions 

 

Electric currents 

• current density in the range of 107 ÷ 108 A/m2 (torch 1) and of 106 ÷ 107  

       A/m2 (torch 2) on the rounded cathode tip, where the temperature  

       is set to a value of 3500 K (thermionic emission) 

• the external anode wall is grounded (electric potential = 0 V) 

• axial symmetry on the z axis, the other surfaces are  electrically  

       insulated   

 

Magnetic fields 

• magnetic potential A fulfills the condition                       on the boundaries  

      (magnetic insulation) and the axial symmetry on the z axis 

• a gauge fixing 0 = 1 A/m field is used for a A  
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Boundary conditions (cont.) 

Heat transfer 
 
• the anode is externally cooled: h= 104 W/(m2 K),  Text= 500 K  
• axial symmetry on the z axis 
• the cathode tip has a temperature of 3500 K while the temperature of the gas at  
        inlet is 300 K  
• the other surfaces are insulated  
• prescribed radiosity (gray body) on the internal surfaces 

 
Fluid flow 
 
• Torch1 inlet : 2.0 STP m3/h of argon (vz  = 1.35 m/s), vr = 0  and three  
       free vortex flows v  = k1 /r  (k1 equal to 4.86x10(-3) m2/s,   
       9.72x10(-3) m2/s and 14.58x10(-3) m2/s) 
• Torch2 inlet : 6.35 STP m3/h of nitrogen (vz  = 1.37 m/s), vr = 0  and 
       three free vortex flows v  = k1 /r (k1 equal to 0.291 x10(-1) m2/s,   
       0.582x10(-1) m2/s and 0.873x10(-1) m2/s)  
• no slip on the walls 
• pressure is set to 0 at the outlet 
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Solution with Comsol Multiphysics ® 
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torch1: partial view of the mesh 
between the cathode and anode 

• meshing torch1 and torch2 with nearly 1.1x105 (1.4x106 
DOFs) and 1.3x105 (1.7x106 DOFs) triangle elements, 
respectively; mesh refinement close to the walls 
 

• using a fully coupled approach, the MUMPS direct solver 
is selected 
 

• computational model was run in a workstation with Intel 
Xenon CPU E5-2687W v2 16 cores, 3.40 GHz (2 
processors), 216 GB RAM, 64bit and Windows 7 
Operative System 
 

 

thin region between the  
cathode and anode with 
σmin = 8000 S/m  
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Numerical results: temperature and velocity magnitude for torch1 
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arc column of argon gas, heated, ionized 
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A/m2). Velocity field of the torch 1 (2.0 STP m3/h, 

k1 = 4.86x10(-3) m2/s, Jn= 0.8x108 A/m2). 

σmin = 8000 S/m in the whole fluid region 

3D, T is non-axisymmetrical 

2D, T is axisymmetrical 

the maximum temperature and axial velocity  
for torch1, computed by He-Ping and  
Xi-Chen [8], are higher  

He-Ping and Xi Chen [8]: 
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Numerical results: temperature and velocity magnitude for torch2 
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Numerical results: arc attachment 
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He-Ping and Xi Chen [8]: 
the position of the arc attachment is near the intersection between the 
convergent part and the cylindrical part of the anode (z=30 mm) and it is not 
uniform in the circumferential direction. 
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Numerical results: temperature and velocity magnitude for torch1 
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Having halved the normal current 
density in the cathode tip, the maximum 
temperature reaches the same values of 
the previous case  with σ=8000 S/m in 
the whole fluid region.  

Whereas the axial velocity 
is nearly doubled. 

σmin = 8000 S/m in a thin region between cathode and anode 
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k1 = 4.86x10(-3) m2/s, 0.4x108 A/m2). 
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Conclusions 
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• Two DC plasma torches have been modeled and simulated by developing 2D models of 
laminar flow, heat transfer and electromagnetic fields. 
 

• Lorentz forces and Joule heating effects have been represented, coupled to the physical 
model and finally computed. 
 

• In order to ensure the electric flow, we have used an artificial minimum value of 8000 
S/m (σmin) for the electrical conductivity of the gas: a) in the whole fluid region; b) in a 
thin channel between cathode and anode. 
 

• The numerical computations of the gas temperature and axial velocity, which depend on 
where we set the artificial electrical conductivity, result to be quite satisfactory.  
 

• We foresee to develop a more complete reproduction of thermal and fluid phenomena in 
a 3D model, but computational requirements and computing times should be also taken 
into account. 
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