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Introduction 

Electrochemical sensing of 
neurotransmitters 

by applying voltage

Mechanical disturbance
on neural electrode

from motion while sensing
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Form of applied voltages and resulting currents



Problem statement 
Electrical signals from neurotransmitters can be distorted or too noisy 

by motion of subject, which has a neural electrode in the brain. 

 Movements from walking, breathing and pulsation make periodic motion.
- Up to 25 µm, 1-2 Hz for breathing and 1-4 µm, 3-4 Hz for pulsation

 Electrode properties such as its material, geometry and interface will affect 
the quality of electrochemical signals from diffusion of neurotransmitters. 
- Chemical kinetics of electrode : form of applied voltage, double layer 

capacitance and the standard rate constant. 
- Mechanical conditions : stiffness of electrode and friction condition 

between brain and electrode  



Neurotransmitter Sensing by Cyclic Voltammetry
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Identifying Neurotransmitters

Teaching note on department of chemical engineering 

and biotechnology in University of Cambridge 

In vivo histamine voltammetry in the mouse premammillary

nucleus, Srimal Samaranayake, Analyst, 2015
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Simulation Methods 

 Insulated surface is normally coated 
with parylene. 

 Friction coefficient of reaction surface 
is affected by astro-glial sheath 
formation on electrode.

Material Young’s 

Modulus (Pa)

Poisson’s 

Ratio

Density 

(kg/m^3)

Polyimide [5] 2.8 x 10^9 0.33 1330

Brain [6] 15000 0.45 1050

Table 1. Material Properties 
 Polyimide is the representative 

material for flexible electrode.
 The brain was modeled using the 

Kelvin-Voigt viscoelastic material 
model with 12.5ms relaxation time.

A.  2D Geometry and Mesh



Simulation Methods 
B.  Applied Physics 

1) Diffusion and Transport 
𝜕𝑐𝑖

𝜕𝑡
+ 𝛻 ∙ −𝐷𝑖𝛻𝑐𝑖 = 𝑅𝑖 , 𝑅𝑖 =

𝑣𝑖𝑖𝑙𝑜𝑐

𝑛𝐹
< 𝑣𝑖 ∶ stoichiometric coefficient, n=number of electrons, F= Faraday constant>

2) Electrochemical analysis 

𝑖𝑙𝑜𝑐 = 𝑛𝐹𝑘0 𝑐𝑟𝑒𝑑𝑒𝑥𝑝
𝑛−𝛼𝐶 𝐹𝜂

𝑅𝑇
− 𝑐𝑜𝑥𝑒𝑥𝑝

−𝛼𝐶 𝐹𝜂

𝑅𝑇
(𝜂 = 𝜙𝑠,𝑒𝑥𝑡 − 𝐸𝑒𝑞)

𝑖𝑑𝑙 = (
𝜕𝜙𝑠

𝜕𝑡
)𝐶𝑑𝑙

< Butler-Volmer equation / double layer capacitance> 

3) Solid Mechanics 

Electrode  : 𝜌
𝜕2𝒖

𝜕𝑡2
− 𝛻 ∙ 𝜎 = 𝑭ν (ν = poisson’s ratio) 

Brain : Kelvin-Voigt viscoelastic  with a relaxation 12.5 ms time

Dynamics : 0.1Hz and 1Hz sinousodial motion of electrode

Electroanalysis
module

Structural 
module



Simulation Methods 
C. Simulation Variables and Parameters ( By using Parametric sweep option)

Variables Notation Values(unit)

Electrochemistry 
Double layer capacitance C 0.01, 0.1(F/𝑚2)

Scan rate v 2, 4, 8 and 400 (𝑉/𝑠)

Dynamics

Amplitude A 1(μm) sinusoidal

Frequency f 0.1, 1 (Hz)

Friction coefficient μ 0, 0.1, 0.3, 1 

Fast Scan Cyclic voltammetry is 
more realistic and powerful tool

What if the phase of 
frequency and CV is matched?



Result 1(a) 𝜇 = 0, 0.1, 0.3 𝑎𝑛𝑑 1

v=2V/s

Scan rate magnifies the effect 
of motion.

v=4V/s v=8V/s



Result 1 (b)

v=8V/s
𝜇=0

v=8V/s
𝜇=1

𝑓 = 0, 0.1 𝑎𝑛𝑑 1 𝐻𝑧

Increased friction 
coefficient makes large 
change in the current 
density. 



Result 2 

(a)Displacement 

(b) Stress 

(c) Concentration 

v=400V/s(Fast Scan CV) , f=1Hz
𝜇 = 0, 0.1, 0.3 𝑎𝑛𝑑 1, 𝐶𝑑𝑙= 0.01 𝑎𝑛𝑑 0.1 𝐹/𝑚2

V = −0.4 V to 1.2V

𝐶𝑑𝑙= 0.01𝐹/𝑚2

𝐶𝑑𝑙= 0.1 𝐹/𝑚2



Discussion & Conclusion
 The study provides understanding the implications in the brain’s micromotion 

disturbance and analyzing neurochemical sensing signals depending on the 
condition of astro-glial sheath formation.

- Astro-glial sheath formation can change mechanical bonding condition and 
double layer capacitance of the electrode-brain interface, and these 
conditions will affect the sensing quality. 

 Increased scan rate also maximizes the effect of micromotion, and signal is less 
affected when the frequency is relatively smaller than scan rate.

 Regarding double layer, increased capacitance makes high current density 
difference, but the effect of capacitance tends to decrease when high mechanical 
friction coefficient is introduced. 
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