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Introduction

• The problem, originally treated by Lévêque in 1928, describes an 
idealized situation, which appears in many application fields as a 
limiting case

• There is laminar flow of a free fluid in the gap between two plates of 
constant spacing H. 

• Behind an initial undisturbed inflow region one of the boundaries 
becomes active 
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Applications

• Heat Transfer
– Cooling
– Heating

• Solute Transport
– Reactive Boundary
– Catalysis



Mathematical Formulation (Flow)

• Hagen-Poiseuille Flow

with maximum velocity

is the analytical solution of the steady state Navier-Stokes equations

for laminar flow between two plates 
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Mathematical Formulation (Transport)

• Transport (Advection-Diffusion) Equation

with diffusivity D and velocity v.

Nondimensionalization yields:

with Peclet-number Pe.

• Boundary Condition

– kinetic:

– Infinitely fast:
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Model Region and Boundaries

Closed reactive boundary

Closed non-reactive boundary

Inflow, Outflow
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Meshing

• Free Meshes, adaptive grid refinement

• Mapped Meshes

– Equidistant mesh in horizontal direction (up to 800 nodes)

– Grid refinement near reactive boundary (up to 100 nodes)



Refined meshes in dependence of the Peclet number
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Results for Pe=0.1, 1 and 10

Concentration distribution:
Red: inflow concentration/ temperature
Blue: boundary concentration/ temperature



Results for Pe = 10, 100, 1000

Concentration distribution
With increasing Peclet number:
Shrinking of the reactive boundary layer



• Total heat transfer is given by:

the (dimensionless) Nusselt number Nu

• Analogously for total mass transfer holds:

the (dimensionless) Sherwood number Sh 

Total Heat or Mass Transfer

1 Sh c dx
L y

∂
=

∂∫

1 Nu T dx
L y

∂
=

∂∫



Sherwood Number Intercomparison 1
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Sherwood Number Intercomparison 2
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Effect of Stabilization

Example runs:

Pe=106

Anisotropic 
streamline diffusion 
with parameter 0.1

Concentration profile
at the lower part of
the outlet boundary
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Conclusions

• The Lévêque 1/3 power law is perfectly confirmed by the 
numerical results

• The transition between the two asymptotics appears for 
Péclet numbers between 0.3 and 30

• The mentioned transition regime is already captured 
accurately by coarse mesh simulations

• Mapped mesh simulations provide more accurate results 
than free mesh simulations

• For numerical methods it is a higher challenge to
approximate the asymptotic situations than the transition 
regime
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