

Presented at the COMSOL Conference 2008 Hannover

Universidade da Madeira

Investigation of Stability of Current Transfer to Thermionic Cathodes

Maria José Faria and Mikhail Benilov

Departamento de Física, Universidade da Madeira, Portugal

COMSOL Conference Hannover November 6, 2008

Acknowledgements

- project POCI/FIS/60526/2004 of FCT
- grant SFRH/BD/35883/2007 of FCT

Introduction

Diffuse mode

Spot mode

Cathode of an arc discharge in argon. W, R = 0.75 mm, p = 4.5 bar, I = 2.5 A. From S. Lichtenberg *et al* 2002.

- 2 -

Introduction

- The diffuse mode is favorable for operation of cathodes of high-pressure arc devices, however it is difficult to be realized.
- Solutions describing the diffuse mode and different spot modes have been obtained and analyzed in detail.
- This information is not yet sufficient for engineering practice: one needs also to have information on **stability** of each of these modes in some or other particular conditions.

Equations and boundary conditions

• Non-stationary equation of heat conduction

$$\rho c_p(T) \frac{\partial T}{\partial t} = \nabla \cdot \left[\kappa(T) \, \nabla T \right]$$

• Boundary conditions

$$\Gamma_c: T = T_c$$

$$\Gamma_h: \kappa(T) \frac{\partial T}{\partial n} = q(T, U)$$

$$I = \int_{\Gamma_h} j(T, U) \underline{dS}$$

U: near-cathode voltage

Known functions: obtained from equations describing the current transfer through the nearcathode plasma layer.

The stationary problem admits multiple solutions describing different modes of current transfer!

Univ. Madeira Dept. Física

- 4 -

Multiple steady-state solutions

Formalism of the linear stability theory

Superposition of a steady-state solution and of a perturbation

$$T(\vec{r},t) = T_0(\vec{r}) + e^{\lambda t} T_1(\vec{r}) + \dots$$
$$U(t) = U_0 + e^{\lambda t} U_1 + \dots$$
$$I(t) = I_0 + e^{\lambda t} I_1 + \dots$$

all $\lambda \le 0$: the state is stable At least one $\lambda > 0$: the state is unstable

Eigenvalue problem for perturbations

$$\rho c_p(T_0)\lambda T_1 = \nabla \cdot \left(\frac{d\kappa}{dT}(T_0)T_1\nabla T_0 + \kappa(T_0)\nabla T_1\right)$$
$$\Gamma_c: T_1 = 0$$

$$\begin{split} \Gamma_{\rm h} &: \frac{d\kappa}{dT} (T_0) T_1 \frac{\partial T_0}{\partial n} + \kappa (T_0) \frac{\partial T_1}{\partial n} = \frac{\partial q}{\partial T} (T_0, U_0) T_1 + \frac{\partial q}{\partial U} (T_0, U_0) U_1 \\ 0 &= \int_{\Gamma_h} \left(\frac{\partial j}{\partial T} (T_0, U_0) T_1 + \frac{\partial j}{\partial U} (T_0, U_0) U_1 \right) dS \end{split}$$

- 6 -

Even and odd perturbations

Stability: COMSOL straight

- 8 -

Stability: COMSOL straight

Axially symmetric steady-state solutions

Even perturbation

Same eigenvalue: Complete spectrum

• 3D steady-state solutions

Even perturbation H
Odd perturbation

- 9 -

Different eigenvalues: Incomplete spectrum!

Stability: combined approach

A combined approach: to use explicitly the linear stability theory and two modes of COMSOL

Steady-state solution: Heat transfer application mode, Stationary solver

Perturbations: PDE mode, Eigenvalue solver

 $y = 0: \frac{\partial T_1}{\partial y} = 0$ \longrightarrow Even perturbations $y = 0: T_1 = 0$ \longrightarrow Odd perturbations

Univ. Madeira Dept. Física

- 10 -

Numerical results: examples

W, R = 2 mm, h = 10 mm, Ar, 1 bar. •: bifurcation points.

Numerical results: examples

W, R = 2 mm, h = 10 mm, Ar, 1 bar. •: bifurcation points. \blacksquare : turning point.

Numerical results of stability of 3D spot modes

v	Т	Even perturbations	Odd perturbations
1	2π	$+ \rightarrow$ -	0
2	2π	+	+
	π	+ \rightarrow -	0
3	2π	+, +	+, +
	2π /3		0
4	2π	+, +	+, +
	π	+	+
	π/4		0

W, R = 2 mm, h = 10 mm, Ar, 1 bar.

v: number of spots at the edge of the front surface of the cathode. T: period.

- 13 -

Summary of results of stability of 3D spot modes

Perturbations			
Even	Odd		
Can change sign of their increment along 3D steady-state spot modes.	Do not change sign of their increment along 3D steady-state spot modes.		
Perturbations of a steady-state mode with v spots at the edge of the front surface of the cathode are periodic with respect to the azimuthal angle with periods between 2π and $2\pi/v$.			
- unstable against v modes of even perturbations with period exceeding $2\pi/v$ in the region between the bifurcation point and the turning point; - unstable against $v - 1$ modes of even perturbations with period exceeding $2\pi/v$ in the region after the turning point or if the mode is supercritical;	 neutrally stable against one mode of odd perturbations with the period of 2π/ν; unstable against v – 1 modes of odd perturbations with period exceeding 2π/ν; 		
- stable against all the others modes of perturbations with such periods.			

Application of the numerical results

W, R = 2 mm, h = 10 mm, Ar, 1 bar.

• Modes with one spot at the center or with multiple spots are always unstable.

• The only modes that can be stable are the diffuse mode and the high-voltage branch of the first 3D spot mode.

• The transition between these two modes is nonstationary and accompanied by hysteresis.

- 15 -

Stability of current transfer in experimental conditions

- 16 -

• In this experiment, both the diffuse mode and the high/voltage branch of the first 3D spot mode are stable in the whole range investigated (1A - 6A).

• => No reproducible diffuse-spot transition!

W, R = 0.75 mm, h = 20 mm, rounding 100 μ m, Ar, 2.6 bar.

Conclusions

- A general pattern of stability of the different modes of current transfer has been established.
- This pattern conforms to trends observed in the experiment:
 - the diffuse-spot transition on arc cathodes is a monotonic process;
 - patterns with more than one spot are not normally observed;
 - the diffuse mode is observed at high currents and the mode with a spot at the edge of the cathode at low currents;
 - the transition between the diffuse mode and the mode with a spot at the edge is non-stationary and is accompanied by hysteresis;
 - this transition is difficult to be reproduced in the experiment.

Univ. Madeira Dept. Física

- 17 -