Presented at the COMSOL Conference 2008 Hannover

Solving Time-Dependent Optimal Control Problems in

Comsol Multiphysics

Ira Neitzel, Uwe Prifert, and Thomas Slawig

4

AR
. E otz sean
é!ug 55

Problem Setting

Optimal control problems subject to time-dependent par-
tial differential equations are challenging from the view-
point of mathematical theory and even more so from nu-
merical realization.

Essentially, there are two different approaches to solve

such problems.

¢ "Discretize then Optimize": Transformation of the op-
timal control problem into a nonlinear programming
problem by discretization.

« "Optimize then Discretize": Developing optimality con-
ditions in function spaces that are discretized and
solved.

o For certain classes of problems it is possible to derive
optimality conditions in PDE form.

e The latter strategy then involves solving systems of
PDEs.

o It hence suggests itself to apply specialized PDE soft-
ware to solve these systems.

eWe aim at applying COMSOL Multiphysics for op-
timization, taking advantage of the built-in routines
to define, discretize and solve stationary and time-
dependent PDEs via the finite element method.

o Time-dependent PDE control problems admit the typi-
cal feature of reverse time directions in the PDEs of the

optimality systems.
« This additional difficulty needs to be taken into account
when solving these problems numerically.

We consider the optimal control problem (P):
J(y, u):l/(yfyd)2+h‘u2dzdt, (1)
2 Jg
subject to the parabolic PDE with distributed control

y— Ay =u inQ
Ony+ay=g onX o, (2)
y(t=0) =y inQ

Consideration of boundary control problems also
possible.

Theoretical Preparations

Assumption 1. In this setting, & ¢ RY, N = 1,2, is
a spatial domain with sufficiently smooth boundary 0,
(0,7) is a non-empty time intervall, & := 9Q x (0,7), and
Q = Q x (0,T). Moreover, we consider functions g € L(%)
and y, € L%(2) and controls u € L4(Q).

A short formulation of the model problem with control «
and state y then reads

min J(y,u) subject to (2) (P)

Theorem (Solvability of the state equation) For any triple

(f,9,w0) € LAQ) x L2(2) x L*(Q) the initial-boundary value
problem
y—Ay = f inQ,
Oy +ay =g oNx,
y(t=0) =y inQ
admits a unique solution

y € W(0,T) := {y € LX0,T; H(Q))|y € L*(0,T, H(Q)*)}.

Theorem (Existence of an optimal solution) Under As-
sumption 1 and for J defined in (1), and arbitrary « > 0,
the optimal control problem defined in (P) admits a unique
optimal control v* € U = L*(Q).

Theorem (Optimality system) Let v* € U = L*(Q) be the
optimal control of Problem (P) and let y* denote the as-
sociated optimal state. Then there exists an adjoint state
p € W(0,T) as weak solution of

—p—Ap =y -y inQ
Opp+ap =0 ony ;, (3)
pit=T) =0 in Q

and the gradient equation
KU —ug)+p =0 (4)
is fulfilled for almost all (z,¢) € Q.

More details: [3], [1]

Strategies to deal with the reverse time directions

o Somewhat classical approach: sequentially solving the
state and adjoint equation, updating the control in a gra-
dient based optimization algorithm, cf. [2] for an imple-
mentation in COMSOL Multiphysics

o Alternative: Treating the coupled optimality system in
the whole space-time cylinder by interpreting the time
variable as an additional space variable.

Treating the Reverse Time directions by Simultane-
ous Space-Time Discretization

« Insert gradient equation (4) into state equation

e Interpret @ as spatial domain of dimension N + 1 with
boundary U Q x {0} UQ x {T}

Op+ap =0

yt— Ay = ug— %p .
m
—pt—Ap=y—yg

Oy +ay =
i) Y=y } on ¥

y =y inQx {0}
p=0 mnQx{T}

An example in 2D
The space-time domain is defined by

Q= (0,7)%x (0,7) CR®
and the functions y,, u4, and g are given by

yq = sin(x1) sin(z2) sin(t) — cos(z1) cos(za) — 2 cos(z7) cos(za) (7 —1t),

1
ug = sin(xq) sin(zg) cos(t)+2 sin(z1) sin(zg) sin(t)+— cos(z1 ) cos(xa) (7 —f),
K

g= —ﬁsin(t)(sin(url),sin(zg))T,
Moreover, a = 0, x = 0.01 are given.

Optimal solution

(@1, w9, t) = sin(zy) sin(wo) sin(t)

(cos(t) + 2sin(t))
p* (1,22, 1) = cos(ay) cos(xa)(m — t),

(
(

(
w*(21, x9, t) = sin(zy) sin(zy

Parts of a COMSOL Multiphysics Script:

fem.equ.ga = { { {’-yx1’ ’-yx2> °0’};
{?-px1’ -px2’ 0°}} };
fem.equ.f = { {’-ytime+u’ ’ptime+y-yd(x1,x2,time)’} };
fem.bnd.r = { {"y-y0’ 0} {0 ’p’} {0 0} {0 0} };
fem.bnd.g = { {0 0} {0 03};
{’gl(x1,time)-alpha*y’ ’-alpha*p’}
{’g2(x2,time) -alpha*y’ ’-alpha*p’} };
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Table 1: Errors to the 2D example, adaptive solver

Conclusion

We have succesfully applied the finite element package
COMSOL Multiphysics to simple time-dependent optimal
control problems subject to PDE constraints by utilizing
an Optimize then Discretize strategy.

e The introduced strategy works reasonably well for our
simple example problems.

« We take advantage of the fact that optimality conditions
can be formulated as a PDE.

e The method we use is easily implementable and may
well serve as a first step towards optimizing a given
goal without the use of specialized optimization rou-
tines.

e The approach does not substitute the use of special-
ized optimization software.

« Elliptic solvers are used for time-dependent parabolic
control problems, which may cause instability prob-
lems.
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