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Problem Setting

Optimal control problems subject to time-dependent par-
tial differential equations are challenging from the view-
point of mathematical theory and even more so from nu-
merical realization.

Essentially, there are two different approaches to solve
such problems.

• "Discretize then Optimize": Transformation of the op-
timal control problem into a nonlinear programming
problem by discretization.

• "Optimize then Discretize": Developing optimality con-
ditions in function spaces that are discretized and
solved.

• For certain classes of problems it is possible to derive
optimality conditions in PDE form.

• The latter strategy then involves solving systems of
PDEs.

• It hence suggests itself to apply specialized PDE soft-
ware to solve these systems.

• We aim at applying COMSOL Multiphysics for op-
timization, taking advantage of the built-in routines
to define, discretize and solve stationary and time-
dependent PDEs via the finite element method.

• Time-dependent PDE control problems admit the typi-
cal feature of reverse time directions in the PDEs of the

optimality systems.

• This additional difficulty needs to be taken into account
when solving these problems numerically.

We consider the optimal control problem (P):

J(y, u) =
1

2

∫

Q
(y − yd)

2 + κu2 dxdt, (1)
subject to the parabolic PDE with distributed control

yt − ∆y = u in Q

∂ny + αy = g on Σ

y(t = 0) = y0 in Ω
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, (2)
.
Consideration of boundary control problems also
possible.

Theoretical Preparations

Assumption 1. In this setting, Ω ⊂ R
N , N = 1, 2, is

a spatial domain with sufficiently smooth boundary ∂Ω,
(0, T ) is a non-empty time intervall, Σ := ∂Ω × (0, T ), and
Q := Ω × (0, T ). Moreover, we consider functions g ∈ L2(Σ)

and y0 ∈ L2(Ω) and controls u ∈ L2(Q).

A short formulation of the model problem with control u

and state y then reads

min J(y, u) subject to (2) (P )

Theorem (Solvability of the state equation) For any triple

(f, g, y0) ∈ L2(Q) × L2(Σ) × L2(Ω) the initial-boundary value
problem

yt − ∆y = f in Q,

∂ny + αy = g on Σ,

y(t = 0) = y0 in Ω

admits a unique solution

y ∈ W (0, T ) := {y ∈ L2(0, T ; H1(Ω))|yt ∈ L2(0, T,H1(Ω)∗)}.

Theorem (Existence of an optimal solution) Under As-
sumption 1 and for J defined in (1), and arbitrary κ > 0,
the optimal control problem defined in (P ) admits a unique
optimal control u∗ ∈ U = L2(Q).

Theorem (Optimality system) Let u∗ ∈ U = L2(Q) be the
optimal control of Problem (P ) and let y∗ denote the as-
sociated optimal state. Then there exists an adjoint state
p ∈ W (0, T ) as weak solution of

−pt − ∆p = y∗ − yd in Q

∂np + αp = 0 on Σ

p(t = T ) = 0 in Ω
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, (3)

and the gradient equation

κ(u∗ − ud) + p = 0 (4)
is fulfilled for almost all (x, t) ∈ Q.

More details: [3], [1]

Strategies to deal with the reverse time directions

• Somewhat classical approach: sequentially solving the
state and adjoint equation, updating the control in a gra-
dient based optimization algorithm, cf. [2] for an imple-
mentation in COMSOL Multiphysics

• Alternative: Treating the coupled optimality system in
the whole space-time cylinder by interpreting the time
variable as an additional space variable.

Treating the Reverse Time directions by Simultane-
ous Space-Time Discretization

• Insert gradient equation (4) into state equation

• Interpret Q as spatial domain of dimension N + 1 with
boundary Σ ∪ Ω × {0} ∪ Ω × {T}

yt − ∆y = ud −
1
κp

−pt − ∆p = y − yd

}

in Q,
∂ny + αy = g

∂np + αp = 0

}

on Σ

y = y0 in Ω × {0}

p = 0 in Ω × {T}.

An example in 2D

The space-time domain is defined by

Q = (0, π)2 × (0, π) ⊂ R
3

and the functions yd, ud, and g are given by

yd = sin(x1) sin(x2) sin(t)−cos(x1) cos(x2)−2 cos(x1) cos(x2)(π−t),

ud = sin(x1) sin(x2) cos(t)+2 sin(x1) sin(x2) sin(t)+
1

κ
cos(x1) cos(x2)(π−t),

g = −~n sin(t)(sin(x1), sin(x2))
T ,

Moreover, α = 0, κ = 0.01 are given.
Optimal solution

y∗(x1, x2, t) = sin(x1) sin(x2) sin(t)

u∗(x1, x2, t) = sin(x1) sin(x2)(cos(t) + 2 sin(t))

p∗(x1, x2, t) = cos(x1) cos(x2)(π − t),

Parts of a COMSOL Multiphysics Script:

fem.equ.ga = { { {'-yx1' '-yx2' '0'};{'-px1' '-px2' '0'}} };fem.equ.f = { {'-ytime+u' 'ptime+y-yd(x1,x2,time)'} };fem.bnd.r = { {'y-y0' 0} {0 'p'} {0 0} {0 0} };fem.bnd.g = { {0 0} {0 0};{'g1(x1,time)-alpha*y' '-alpha*p'}{'g2(x2,time)-alpha*y' '-alpha*p'} };

uh

yh

ph

hauto ‖u∗ − uh‖Q ‖y∗ − yh‖Q

7 3.1710 · 10−1 4.7920 · 10−3

6 1.7107 · 10−1 2.3017 · 10−3

5 5.0385 · 10−2 5.4455 · 10−4

Table 1: Errors to the 2D example, adaptive solver
Conclusion

We have succesfully applied the finite element package
COMSOL Multiphysics to simple time-dependent optimal
control problems subject to PDE constraints by utilizing
an Optimize then Discretize strategy.

• The introduced strategy works reasonably well for our
simple example problems.

• We take advantage of the fact that optimality conditions
can be formulated as a PDE.

• The method we use is easily implementable and may
well serve as a first step towards optimizing a given
goal without the use of specialized optimization rou-
tines.

• The approach does not substitute the use of special-
ized optimization software.

• Elliptic solvers are used for time-dependent parabolic
control problems, which may cause instability prob-
lems.
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