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Abstract: The computation of J-integral for 

curve geometry is a challenging task even for a 

unimodular case due to the presence of 

additional area integral term due to its 

geometrical correction factor. The formulation of 

bimodular stress field is based on stress 

dependent elasticity and the simulations have 

been carried out using commercial finite element 

software COMSOL Multiphysics 4.4. The 

complexity of the problem is enhanced due to 

adding bimodular stress field in the evaluation of 

complex J-integral ( ˆ
FJ ) for curve cracked 

geometry subjected to standard three point 

loading conditions. It has been observed from the 

simulations that complex J-integral is almost 

independent of its path. The analysis of stress 

distribution and measurement of neutral axis 

shift has been done due to bimodularity. The 

severity of bimodular 2D curved crack 

progression behavior has been delineated with 

asymmetry of stress-distribution and distortion 

of neutral axis. 

Keywords: Curved crack, J-integral, bi-modular 

material, nuclear grade graphite, stress dependent 

elasticity,   

1. Introduction
St. Venant recognized that certain actual

materials have different elastic behavior when

they are loaded in tension as compared to

compression in 1826 [1]. Though, the concept of

such materials which are showing different

moduli in tension and compression was not

devised by Timoshenko as bimodular materials

in pure bending [2]. For the beam subjected to

pure bending condition, Marin derived the

expression for effective stiffness for such

materials [3]. The bimodulus concept was

extended to two-dimensional materials by

Ambartsumyan [4-6]. Within the last few

decades, several attempts have been made to

establish constitutive relationships for such

materials and develop analytical and numerical

solutions for the bending and shear deformation 

of bimodular beams [7-14].  

Due to their stability at higher temperature, high-

temperature strength, lighter weight, better 

erosion, corrosion and oxidation resistance, 

lower thermal conductivity, lower cost, and 

wider availability; advance ceramic used in 

various applications and most of them are 

showing bimodularity. In flexural condition, 

ceramics fails due to tensile flexural strength 

cross the critical limit. The lack of ductility and 

yielding capability offers ceramic materials their 

most undesirable characteristics such as low 

strain tolerance, low fracture toughness [15]. 

Failures in such brittle materials with very low 

strength may take place due to pre-existing 

flaws/defects or crack and its subsequent growth 

into defect-free regions with disastrous 

consequences to human life, often involving 

large-scale financial loss. Therefore it is essential 

to characterize quantitative the residual strength 

of material in the presence of cracks/ defects. 

The energy concepts of correlation with crack 

extension based on fracture mechanics has been 

very useful in the accurate failure prediction 

[16]. Eshelby, Cherepanov and Rice played a 

very significant role in the advancement of static 

fracture mechanics [17-19].  Rice’s J-integral 

comprises the salient features like it has the 

physical interpretation of equivalent energy 

release rate (G); it has the property of path 

independence and it can be related to the stress 

intensity factors. Within few decades a lot of 

effort has been done on the extensions of J-

integral for different geometry and loading 

condition by the several researchers which 

includes analytical derivation as well 

computational estimation but focused on only 

straight or arbitrarily kinked crack geometry [20-

25].  

In contrast, it is very well-known that the crack 

geometry is one of the major parameters that 

affect the overall resistance against fracture for 

many structures. Due to complex design and 

their applicability of non-uniform load may lead 
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to appearance of curved cracks more expected 

than that of straight cracks. The curved cracks 

are also originated frequently in bimaterial 

interfaces. Some researchers have been worked 

on the curved crack geometry with various 

loading configuration to characterizing crack 

parameters like stress intensity factor, J-integral 

[26-33]. The strength of advance ceramics is 

affected by bimodular behaviour of material and 

also affected the cracked parameter in straight 

crack geometry is studied by [34-36].  

This paper deals with the effect of bimodularity 

on crack characterizing parameter specifically 

complex path independent integral ( ˆ
fJ ) derived 

by [28] from the appropriate energy balance 

expression has been proposed for a two-

dimensional stationary circular arc crack 

subjected to various loads. In contrast, this paper 

is limited to static loading within linear elastic 

fracture mechanics (LEFM) region, because 

ceramic have lack of ductility and yielding. 

2. Finite Element Model

2.1 Specimen Geometry 

A semi-circular crack geometry is emanating 

from the mid line of the lower surface and 

subjected to the three point flexural loading as 

shown in Figure 1. 

Figure 1: Circular arc cracked flexural specimen 

with five contours for which complex J-integral 

value evaluated and the arc length is 2 mm radius 

2.54mm. 

The length of an edge curve crack is 2 mm 

whereas the radius is 2.54 mm (1inch). The crack 

made 450 angle from the bottom surface. The 

two faces of the crack are radially parallel and 

the distance between the two faces is .02 mm. 

The length of specimen is 100 mm and the 

height of the specimen is 10 mm. The applied 

load P is quantitatively equal to 500 N. The two 

dimensional finite element simulations were 

performed for nuclear grade graphite (grade 

2020) and its mechanical properties were taken 

from Graphite design handbook [37]. The 

Young's Modulus of elasticity for this graphite in 

tensile loading is found to be 7.14 GPa whereas 

in compressive loading is 3.89 GPa  as overall 

ET/EC ratio is 1.83  .  

2.2 Finite Element Model 

The two dimensional model has been prepared 

using finite element software package COMSOL 

Multiphysics 4.4 [38]. After the mesh convergent 

study, the final mesh model has been made-up of 

overall 3090 elements, in which 3015 quadratic 

elements and 75 triangular elements  as shown in 

Figure 2.   

Figure 2: Finite Element mesh for geometrical 

curve cracked model  

2.3 Mathematical formulation for 

Bimodularity 

Some natural and artificial materials which 

exhibit different elastic moduli in compression 

and tension are called as bimodular materials. In 

the flexural testing, when subjected to three point 

loading condition, the effect of bimodularity 

really works on the basis of stress dependent 

elasticity, because the top half portion of the 

specimen possess compressive stress region and 
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the other half of the portion possess tensile stress 

region. The implementation of this property in 

finite element model is quite challenging task. 

The model formulation has been done using 

stress dependent elasticity, and the following 

steps are availing the bi-modular formulation:  

 

1. 1st iteration is the linear model formation 

where taking some arbitrary value of 

Young's Modulus of elasticity. That means 

the model is solved for unimodular 

condition, then after we found the stress 

distribution at each node. 

 

2. Sense the stress value at each node. 

 

3. Evaluate the value of variable p at each node. 

where p is negative hydrostatic stress. 

3
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p
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4. For next iteration we have to put the ET 

(Young's Modulus of elasticity in tension) 

and EC (Young's Modulus of elasticity in 

compression) according to following 

criteria, where Young's Modulus of 

elasticity is defined by a step function. 

 

5. The modulus of elasticity of material is  

define a step function, which sense the value 

of p 

,
( )

,

T

C

E where p
E p

E where p

 
  

 

    (2) 

  

6. Putting the ET and EC value at the nodes by 

finding where the value is -p and +p 

respectively and again solve the problem. 

 

7. The iteration continues until the error became 

less than tolerance limit. 

 

8. So, the duration of solving the problem is 

greatly increased by mesh refinement and 

reducing the tolerance limit.  

 

9. So, finding appropriate solution in 3D is 

quite a difficult task because the solution 

time is too long. 

 

 

3. Path independent integral ˆ
FJ  

 

In the present study, the investigation of the 

performance of integral FĴ  under the applied 

bimodular stress field for nuclear grade graphite 

(grade 2020) [37] for an edge circular cracked 

beam undergoing flexural loading deformation, 

as shown in Figure 3. The curved crack borders 

are assumed traction-free. Recalling the path 

independent integral expression FĴ  [28], the 

energy release rate is given by 
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where, 

 ,   Angle 

W     Strain energy density 

n
    

Unit outward positive normal vector on    

          d  in   direction.         

 i
    Stress tensors 

ij      Stress tensors 
th
ij   Thermal Strain Tensor 

o
ij   Initial Strain Tensor 

A   Arbitrary Curve surrounding A  

iB       Body force vector 

iu
       

Displacement vector 

iu       Material acceleration vector 

ρ          Density 

ij
       

Strain tensor 

n̂
        

Physical components of the tensor n
 

iT    Traction Vector 

iT̂          Physical components of the tensor 
iT  

 i
ˆ

       
Physical components of the tensor 

 i
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ij̂
      

Physical components of the tensor 
ij  

iû
        

Physical components of the tensor 
iu  

iB̂
        

Physical components of the tensor 
iB  

;
ˆ

iu       Physical components of the covariant 

              derivative riu ,  

riu ;
ˆ       Physical components of the covariant 

              derivative ,iu  

th

ij  ;
ˆ       Physical components of the covariant 

              derivative 
th

ij  ,  

o

ij  ;
ˆ       Physical components of the covariant 

              derivative 
o

ij  ,  
The subscript resembles to the covariant and 

superscript, contra-variant tensor properties. The 

first two integrals in the right hand side of the 

above expression (3) is equivalent to the F-

integral for circular arc crack [27]. For infinite 

crack radius the area integral vanishes and the 

expression leading to the illustrious Rice’s J-

integral [19]. The area integral expressions 

within the square brackets in Eq. (3) represent 

the correction terms to preserve path 

independence of FĴ  integral due to thermal 

strain, initial strain, material inertia and body 

force effects in respective progression. 

 

                                                                       
                           

                                                                                                                                                                                                                             

Figure 3: Configuration of a crack tip; PA  

Fracture process region, P  Boundary of PA , 

A
 
Arbitrary curve surrounding A, 


S  Curves 

along the traction-free crack surfaces.   

 

For the numerical estimation of path 

independence under bimodular stress field 

(only), the other integrals in the expression (3) 

due to inertia, thermal or initial strain and body 

force effects are neglected, the FĴ  turns into  
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          (4)        

The expression for FĴ has been developed in 

polar coordinate system. Generally, the finite 

element commercial packages provide output 

data in the Cartesian system, which can directly 

be used in the estimation of FĴ when this 

integral is expressed in global Cartesian form. 

The details of transformations are available in 

[29].  

 

The line integral in Eq. (4) on transformation to 

Cartesian coordinates becomes 
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The area integral in Eq. (4) becomes 
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3.1 Computation of Complex J-integral ˆ
FJ  

  

The estimation of complex J-integral ˆ
FJ for 5 

contours is used as shown in the Figure 1. The 

line integral is evaluated for the following 

contours (shown in Figure 1) whereas area 

integral is evaluated for the area enclosed by the 

same contour. The complex J-integral ˆ
FJ is 

transformed from polar coordinate system to 

Cartesian coordinate system as equation (5) and 

(6) and values are estimated by post-processing. 

  

 

4. Results and Discussion 

 

The figure 4 and 5 represents the stress 

distribution in x-direction in the whole geometry 

as well as around the crack tip. Stress 

concentration near the crack tip is clearly visible 

in the shape like butter-fly in the comparison 

with other part of the beam (for the applied point 

load 500N).  

 

 
 

Figure 4:Normal stress distribution in X-

direction 

 
 

Figure 5: Normal stress distribution in X-

direction around the crack tip.  

 

 

 
 

Figure 6: Von-Mises stress distribution for three 

point bend specimen  

 

 
Figure 7: Von-Mises stress distribution around 

the crack tip for three point bend specimen  

 

Figure 6 represents the variation Von-Mises 

stress field for the whole beam, which reflect the 

very high stress concentration near the crack tip 

with respect to other regions. Dumbbell shaped 

stress concentration has been seen from 

COMSOL post processing result analysis around 

the crack tip as shown in Figure 7.        

 

 
Figure 8: Young's Modulus plot for the three 

point end specimen 

 
Figure 9: Young's Modulus plot for a cross-

section at quarter of the beam and are showing 

the shift of neutral surface. 
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The region of compressive and tensile zone is 

clearly visible by young' modulus of elasticity 

plot as shown in Figure 8. The shifting of the 

neutral axis has been evaluated by the linear 

nodal stress distribution in the vertical linear 

nodes. In the Figure 9, normal stress in x-

direction has been plotted against the vertical 

nodes by one dimensional line graph at the 

position of quarter length of the beam from the 

left end. After the analysis of this graph, the 

shifting of neutral axis is to be found 0.737 mm 

downward from middle axis for total height of 

the beam (10mm). That means 7.35 % of shift is 

reported for nuclear grade graphite (grade 2020). 

That relatively reduce the tensile region which 

take the major role in the flexural failure. 
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Figure 10. Comaparision of normalized  

complex J-integral vs Rice’s J-integral (for 

ET/EC ratio =1.83) at all five contours. 

 

 

 

 

The complex integral ˆ
FJ is very popular integral 

for characterizing circular arc curve crack in 

opening mode. But never used in the flexural 

loading and bimodular stress field condition. The 

Author’s first objective to check path 

independence of the integral for the unimodular 

stress field and flexural loading condition. The 

complex integral ˆ
FJ  is found to be path 

independent, as give us the motivation to check 

the path independence with the bimodular stress 

field. And finally, for the bimodular stress field 

for the nuclear grade graphite (grade 2020) 

material [37], the complex integral ˆ
FJ is found to 

be path independent and the value of normalized 

complex J-integral ˆ
FJ (value is normalized by 

the average value of the five contour value) 

plotted against the integration contours in the 

Figure 10. The comparison of complex J-integral 
ˆ

FJ  with Rice’s J-integral [19] has been done. 

The path independency is lost in the Rice’s J-

integral whereas ˆ
FJ become the independent of 

its path.  

 

5. Conclusions 
The complex integral ˆ

FJ , has been found to be 

path independent computationally for both 

unimodular and bimodular materials. The degree 

of path independency for complex J-integral     in 

the comparison of Rice’s J-integral [2] is found 

to very good. The ET/EC ratio influences the 

value of the complex J-integral ˆ
FJ significantly 

as observed by the simulation of nuclear grade 

graphite grade (2020). Therefore, it is concluded 

that the effect of the bi-modularity on the 

computation of complex J-integral values cannot 

be neglected. 
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