

Electric field induced instability in ultra-thin films

Swarit Dwivedi Vivek Rabibrata Mukherjee Arnab Atta

Patterns at nano/micro-scale

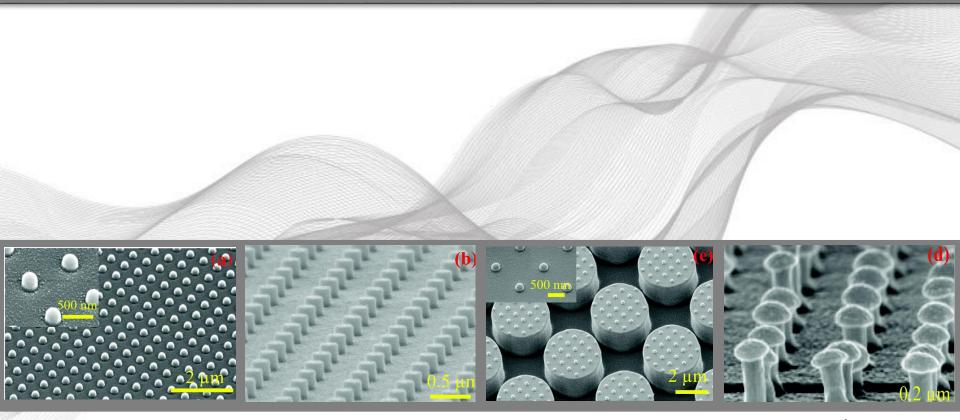
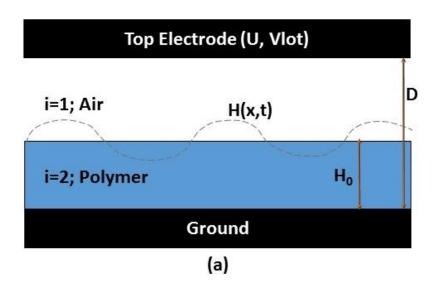



Image source: RSC, Nanotoday: DOI: 10.1039/C4NR04069D

Microfluidic devices, semi-conductor devices, emulsions and coatings are just to name a few applications⁶

Schematic

Top Electrode (U, Vlot)

i=1; Air

L_p

w

i=2; Polymer

Ground

(b)

Top electrode – Flat plate Homogeneous field

Top electrode – Patterned mask Heterogeneous field

- Period limit (L_p), protrude width (w), protrude height (p), electrode spacing(D), lateral electrode distance (d), and initial film thickness (H₀) are shown in the schematic.
- Interface is perturbed either because of its own thermal fluctuations or externally. 8,9,10

Assumptions and Equations

- 2D model is developed
- System is isothermal
- The polymer and air are Newtonian fluids
- Polymer fluid is considered to be perfect dielectric
- All material properties are constant.
- The incompressible **Navier–Stokes** equations and continuity are introduced to describe the flow.
- Inertial terms are neglected.

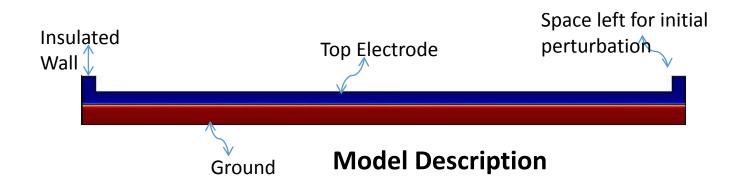
$$\rho_i \left[\frac{\partial \overrightarrow{u_i}}{\partial t} + (\overrightarrow{u_i} \cdot \nabla) \overrightarrow{u_i} \right] = -\nabla p_i + \nabla \cdot \left[\mu_i (\nabla \overrightarrow{u_i} + (\nabla \overrightarrow{u_i})^T) \right] + \overrightarrow{f_i}$$

$$\nabla \cdot (\overrightarrow{u_i}) = 0$$

Assumptions and Equations

- Electrical force is included as a body force term.
- Force acting on the interphase is given by,

$$F = -\frac{1}{2}\epsilon_{o} \nabla \epsilon E. E$$

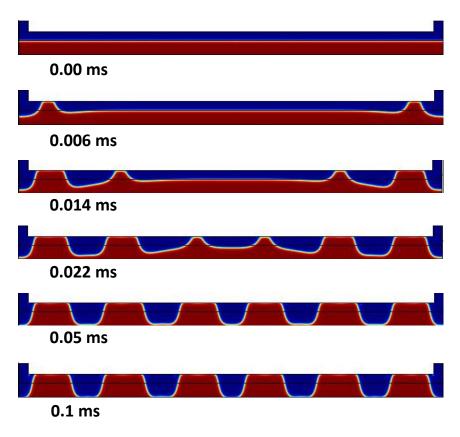

 This force can in-turn be given in a pressure force form using stress boundary condition as^{1,7,8},

$$P_{\rm el} = -0.5 \epsilon_{\rm o} \epsilon (\epsilon - 1) E^2$$

- This pressure is applied as a body force term in computational model using delta function.
- Electrostatics module solves the Laplace equation,

$$\nabla \epsilon \nabla V = 0$$

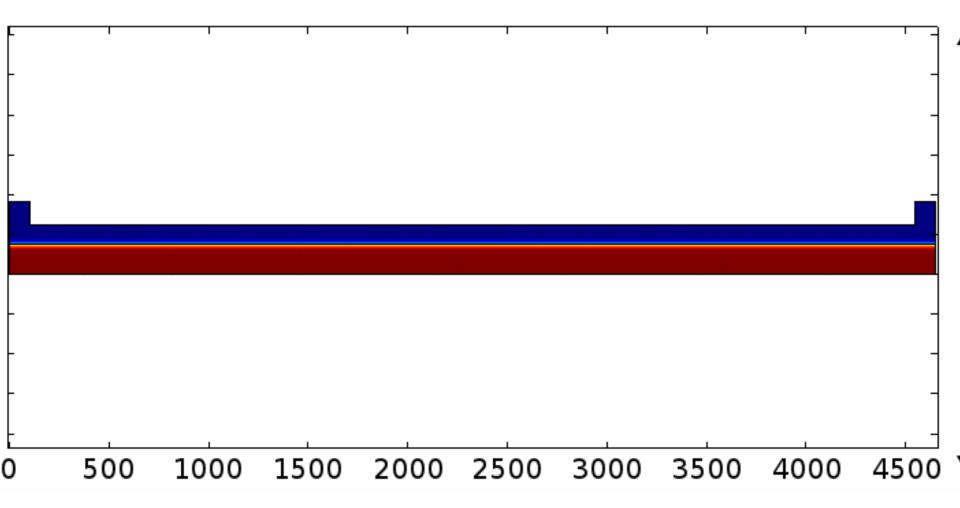
Flat electrode system

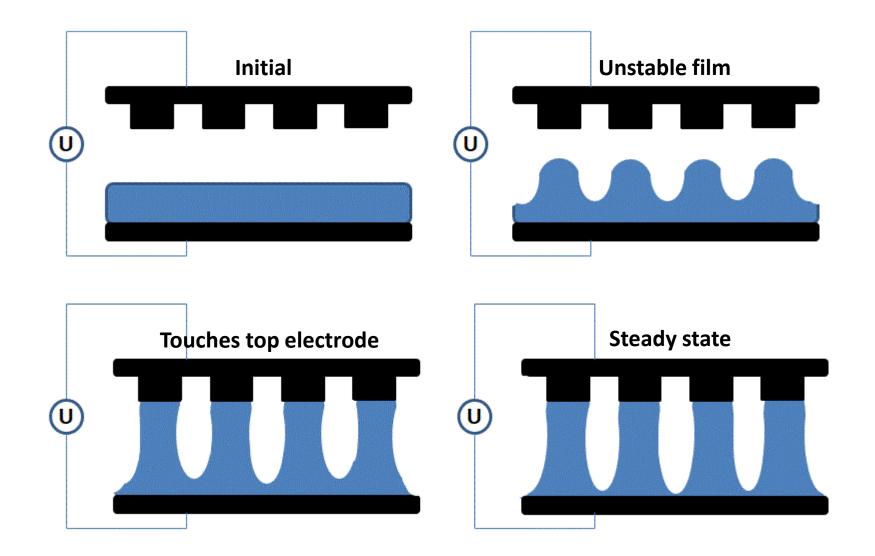

$$\lambda_c = 2\pi \sqrt{\frac{2\sigma U}{\varepsilon_0 \varepsilon_p (\varepsilon_p - 1)}} E_p^{-3/2} \qquad E_p = \frac{U}{\varepsilon_p d - (\varepsilon_p - 1)h}$$

Parameters

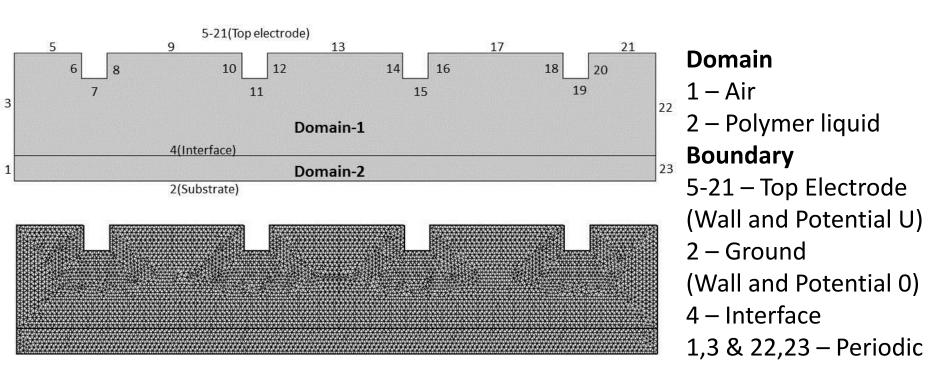
U =30 Volt

$$\sigma$$
 = 0.03 N/m
 ε_p =10
d= 250 nm
h= 150 nm


Validation

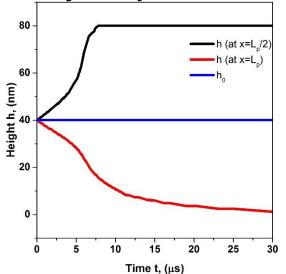

Fastest growing wavelength=780 nm

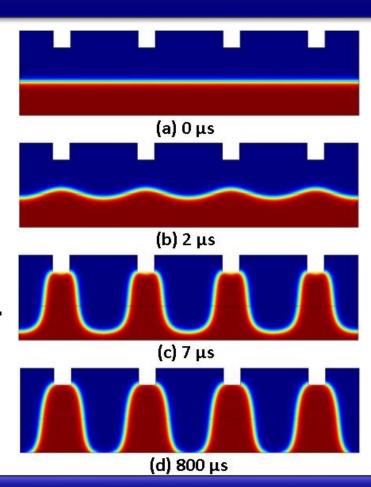
Fastest growing wavelength in linear stability analysis³ =740 nm


Time=0 s Surface: Volume fraction of fluid 2 (1)

Patterned electrode

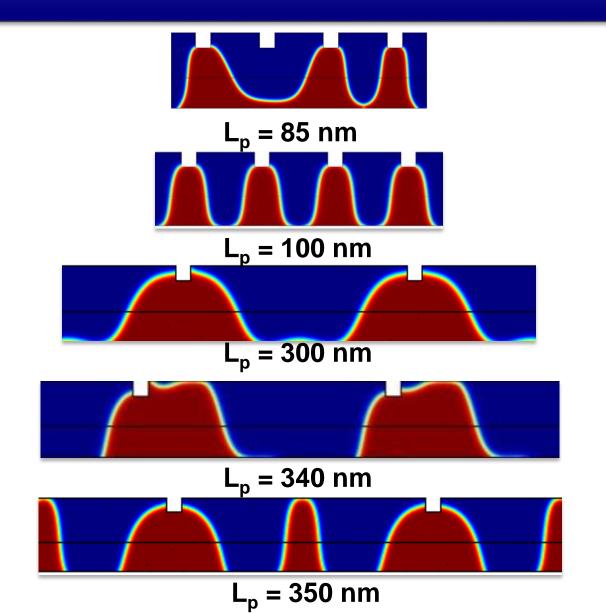
Computational model

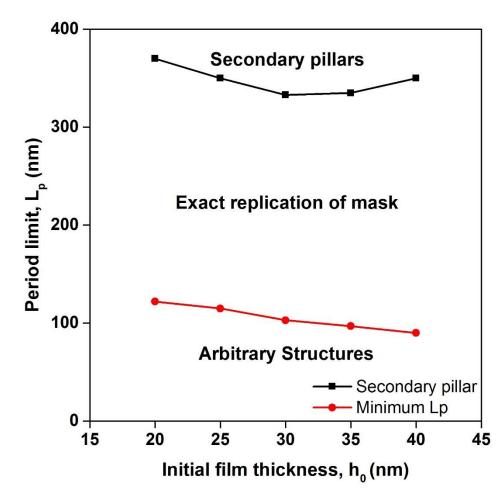



Physics controlled meshing has been done over the system domain

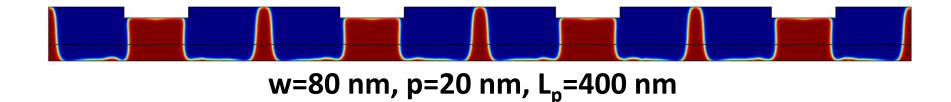
A two dimensional computational model has been developed using COMSOL Multiphysics 5.0

Pillar formation, Exact replication


- A polymer fluid is coated on ground electrode, bounded by air.
- Heterogeneous electric field destabilizes the interface.
- Surface tension opposes while electrical pressure difference drives the flow.
- Liquid flows from falling crests towards rising peaks.
- Polymer pillars attain pseudo steady state.


70 V electrical potential is applied through an electrode assembly having 20 nm × 20 nm square protrusions with periodicity of 100 nm and 100 nm electrode spacing

Effect of period limit



Limitations of patterned electrode

- Verma et al.¹ suggested later quantified by Li et al.⁴, a minimum Period limit required for exact replication of mask
- Upper bound of the same has computationally reported here.
- An unusual trends in the upper limit can be explained when dynamics is observed carefully.

Effect of electrode width

 $w=150 \text{ nm}, p=20 \text{ nm}, L_p=400 \text{ nm}$

 $w=180 \text{ nm}, p=20 \text{ nm}, L_p=400 \text{ nm}$

For all cases U=100 V, D=100 nm, $H_0=30 \text{ nm}$

Final Remarks

- Electric field induced patterning supersedes conventional patterning techniques due to its fast dynamics and low cast.
- A competition between surface tension and electrical forces characterizes a specific wavelength to the system.
- For flat plate, periodicity of structures is equivalent to critical wavelength.
- Linear stability analysis predicts characteristic wavelength (λ_c) for flat plate as

$$\lambda_c = 2\pi \sqrt{\frac{2\sigma U}{\varepsilon_0 \varepsilon_p (\varepsilon_p - 1)}} E_p^{-3/2}$$

Final Remarks

- Corner of top electrode helps in rise of instability because of different local electric field.
- Patterned electrode can reduce characteristic lambda of the system resulting in more densely packed pillars.⁵
- Range of nano/micro structures can be obtained by varying period limit.
- Varying electrode width can control morphologies effectively and novel patterns can be developed.

References

- 1) R. Verma, A. Sharma, K. Kargupta and J. Bhaumik, Langmuir, 2005, 21, 3710–3721.
- 2) A. Atta, D. G. Crawford, C. R. Koch and S. Bhattacharjee, Langmuir, 2011, 27, 12472–12485.
- 3) H. Tian, J. Shao, Y. Ding, X. Li and H. Liu, RSC Advances, 2014, 4, 21672–21680.
- 4) H. Li, W. Yu, L. Zhang, Z. Liu, K. Brown, E. Abraham, S. Cargill, C. Tonry, M. Patel, C. Bailey et al., RSC Advances, 2013, 3, 11839–11845.
- 5) N. Wu and W. B. Russel, Nano Today, 2009, 4, 180–192.

References

- 6) R. Mukherjee and A. Sharma, Soft matter, 2015, 11, 8717–8740.
- 7) E. Schaèffer, T. Thurn-Albrecht, T. P. Russell and U. Steiner, Nature, 2000, 403, 874–877.
- 8) E. Schäffer, T. Thurn-Albrecht, T. P. Russell and U. Steiner, EPL (Europhysics Letters), 2001, 53, 518.
- 9) S. Y. Chou and L. Zhuang, Journal of Vacuum Science & Technology B, 1999, 17, 3197–3202.
- 10) S. Y. Chou, L. Zhuang and L. Guo, Applied Physics Letters, 1999, 75, 1004–1006.