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Abstract: Viscous fingering (VF), a  
hydrodynamic instability, is often observed in 
porous media while displacing fluids having 
viscosity mismatch. Here, for the first time, we 
present the COMSOL® simulations of the radial 
displacements of miscible fluids in a two 
dimensional (2D) homogeneous porous medium. 
It is shown that, even with an unfavourable 
viscosity contrast between the  two fluids, it is 
possible to have a stable displacement, that is,  
the  absence of the fingering instability. Also, the 
evolution from 'flowers' to 'branches' is 
discussed. The results of the present simulations 
are in accordance with the linear stability results.  
 
Keywords: Hydrodynamic instability, Viscous 
fingering, Miscible fluids, Radial source flow, 
Pattern formation. 
 
1. Introduction 
 

From oil recovery [1,2] to chromatographic 
separation [3]; CO2 sequestration [4] to aquifer 
contamination, VF is discerned in many areas 
and has attracted a large number of researchers 
over several decades. Both experimental and 
theoretical studies of VF have considered two 
kinds of displacement models, viz., radial [2,5-
10] and the rectilinear [1,3,4,11]. Both these 
displacement processes are equally applicable for 
miscible as well as immiscible fluids but have 
some dissimilarities. The major difference in the 
rectilinear and the radial displacements lies in the 
growth of perturbations, which is exponential for 
the former [1] while algebraic for the latter [7]. 
Although both the displacement processes are 
associated with a critical Péclet number [7,11] 
for the onset of instability; this critical number 
depends on the frozen diffusive time t0 only for 
the rectilinear model [11], while the radial model 
witnesses no such dependence. An asymmetric 
interface and multiple stages of instability are 
observed in radial flow [12]. The different 
dynamics for the rectilinear and the radial 
displacement model can be explored further. 

 The rectilinear displacement model is 
helpful in studying chromatographic separation 
[3], carbon dioxide sequestration [4], oil 
recovery, etc. In 1981, Paterson [2] pointed out 
that injection of fluid to extract oil is an example 
of radial displacement as the fluid is being 
injected through a well (a point source). In 
various chemical reactions, the 
reactant/autocatalyst is injected radially [5]. 
Another fascination of viscous fingering in radial 
displacement is the complex pattern formation, 
which greatly resembles with many physical and 
ecological processes observed in nature. 
Diffusion-limited aggregation [13], crystal 
growth [14], the growth of the bacterial colonies 
and snowflake formation [6], arrangements of 
leaves in different plants/trees, etc. are a few 
such processes from a long list. Thus, the study 
of pattern formation in radial displacements can 
greatly help to relate different aspects of 
nonlinear dynamics across various disciplines. 
This  motivates the present paper. 

 Many theoretical [7,12], experimental 
[2,5,6,9] and numerical [6,8] studies of the  
radial displacements have been carried out in the 
past. To the best of the author’s knowledge, this 
paper discusses COMSOL® simulations of the 
miscible displacement in radial source flow for 
the first time in literature. Different mesh 
available in COMSOL® are explored. The 
observed patterns are discussed and it is shown 
that the viscous fingering instability can be 
suppressed or increased by controlling various 
flow parameters. 
 
 
2. Governing equations 
 

The radial displacement is modeled by 
considering a circular domain with an injection 
hole (inlet) in the center. A viscous fluid is 
injected from this hole into the circular domain, 
which is saturated with another viscous fluid. 
The fluids considered are Newtonian, 
incompressible, miscible, neutrally buoyant and 
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non–reactive. The two fluids are two different 
solutions of a solute dissolved in a solvent. The 
initial concentration level of the solute in the two 
fluids is different, and mixing of the two fluids 
drives the concentration gradient between the 
two fluids towards an equilibrium state of 
uniform concentration in the mixture. The 
problem under discussion has two parts: 
The hydrodynamic part which deals with the 
flow of the fluid and the transport of species 
part which describes the concentration of the 
species. 

 Mathematical modeling of the above 
mentioned physical problem is described in 
terms of coupled nonlinear partial differential 
equations [7], as follows: 
Continuity equation: 
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In these equations, u!  is the Darcy velocity;
κ and ε  are respectively the permeability and
porosity of the medium; c  is concentration of
the species; D is the molecular diffusion 
coefficient; µ  is the dynamic viscosity of the 
fluid, which depends on the concentration of the 
fluid. We assume the relation to be monotonic 
which can be written as 
µ ( c ) = µ 1 exp( Rc ) (4 )  
where R = ln(µ2/µ1) is the log-mobility ratio, µ1 
and µ2 are the dynamic viscosity of  the 
displacing and the displaced fluid, respectively. 
Equations (1) and (2) deal with the 
hydrodynamic part, representing the 
conservation of mass and the conservation of 
momentum, respectively. Equation (3) is the 
convection-diffusion equation, which describes 
the transport of species. 

The initial and the boundary conditions for 
the hydrodynamic part comprise of specifying 
the velocity and/or the pressure. Initially, there is 
no flow. Uniform velocity is maintained at the 
inlet, while there is free flow at the outlet. 
Mathematically, this can be written as  follows: 
u! (x,y) = 0 at t = 0 for all x and y. 

          =    0,   at the outlet 
U0, at the inlet ,              for t > 0. 

Similarly, we have one fluid of  concentration c1 
initially in the domain. A fluid of concentration 
c2 is injected continuously and no flux in 
concentration is needed at the outlet. 
Mathematically, these initial and boundary 
conditions for the transport of species part can be 
specified as: 
 c(x, y ) = c2, at the inlet 
 
c(x, y) = c1, inside domain at t = 0. 

c(x, y) = c1, inside the domain at t = 0, for all   x 
and  y. Here n̂  is the outward unit normal.

3. Use of COMSOL Multiphysics®
Software

Two-Phase Darcy's Law (tpdl) model of the 
Fluid Flow module is used for the simulations. It 
solves Darcy's law for the total pressure and the 
transport of the fluid content for one fluid phase. 
The domain of simulations and the physical 
properties of the fluids are shown in figure 1. 
Various parameters used are given in table of 
data in appendix. The equations used in this 
model are: 
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where c1=s1ρ1. In the above equations, εp and 
κ are respectively the porosity and the
permeability of the porous medium; Dc is the
capillary diffusion; ρ is the density of the fluid.
For j = 1, 2, sj is the fraction of void space
occupied by the fluid j, called as saturation of
fluid j. ρj, µj and cj are the density, viscosity and

)ˆ( ∇⋅
!

n c = 0 at the outlet. 
 

for t > 0 
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concentration of fluid j. κrj is the relative 
permeability of fluid j, that is, the conductance 
offered by porous medium to a fluid relative to 
other fluid.  
 
 
 

 
       Figure1: Schematic of the radial displacement. 
 
 
 
 Now, we will explain the equivalence of the 
equations (5) - (10) to equations (1) - (3). We 
have assumed the fluids to be neutrally buoyant 
so we have ρ1 = ρ2 = ρ, hence equation (7) and 
(9) are identical. Equation (9) follows from the 
definition of saturation given in previous 
paragraph. In the tpdl, capillary model of porous 
medium is considered. In this model, the porous 
medium is assumed to be one consisting of pores 
which are modeled as capillary tubes, the fluid 
flows through these tubes and we have 
conservation of mass and momentum as given by 
equations (5) and (6) using the continuum 
approach. Without loss of generality, we take the 
values of s1 to be zero or one, which represent 
the fluid to be only fluid 1 or fluid 2. The value 
of sj between zero and one represents the mixing 
zone or the interface, where the two fluids have 
mixed together and co-exist. It should be noted 
that the schematic in figure 1, in no way 
represents a capillary tube, it is the macroscopic 
view of the porous medium consisting of the 
pore space and the solid matrix. The material 
properties are incorporated in terms of the 
porosity and the permeability. 

Equation (5) represents conservation of mass 
and reduces to equation (1) as we have constant 
porosity and incompressible fluids. Equations (6) 
and (2) are the same and represent the Darcy's 
law with u!  being Darcy velocity. Equation (10) 

is convection-diffusion equation, which reduces 
to equation (3) using constant porosity of the 
medium, incompressibility of the fluid and Dc = 
εp D. Equation (8) is the viscosity-concentration 
relationship, which can be shown to be similar to 
equation (4) as follows: 
For j = 1, 2, we assume κrj = 1 and the viscosity 
of fluid j, as 

jµ 	=	 1µ 	exp( 1sR ⋅ )																																						( 11)	
Hence from equation (8) we get, 

)(
)exp(

11
21

11

ss
sR

+
⋅

=
µµ

 

 
Now using equation (9), we get the viscosity 
concentration relation consistent with equation 
(4).  

Next we explain the boundary and initial 
conditions. The ‘inlet’ and the ‘outlet’ boundary 
conditions of the tpdl model are consistent with 
the boundary conditions specified in the previous 
section and they are prescribed respectively at 
the inlet (inner circle) and the outlet (dashed 
boundary) [see figure1]. Initial condition is given 
by specifying value of s1 and pressure p = 0, 
which guarantees no flow initially as at the outlet 
also, p = 0. 

Extra fine ‘Free Triangular’ mesh of Fluid 
dynamics is used in the simulations. Also a 
customised quadrilateral mesh (Free Quad), gave 
the patterns similar to the one obtained using 
triangular mesh. But in case of mapped mesh, a 
disturbance has to be given at a suitable distance 
from the  injection hole for instability to occur.  
See appendix for more details. 
 
 
4. Results and discussions 

 
    First of all, we discuss the evolution from 

‘flowers’ to ‘branches’. Keeping the flow rate Q, 
and the diffusion coefficient D fixed, a variety of 
patterns are observed on increasing the log-
mobility ratio R(>0). For smaller R, wide fingers 
are observed, whose tips at different times 
appear to be lying on concentric circles [10]. 
Beautiful flower-like patterns are formed for 
smaller R. As we go on increasing R, the fingers 
get narrower, tip splitting occurs, resulting in 
ramified structures. Hence on increasing R, an 
evolution from flowers to branches is observed 
as is evident from figure 2. In all the figures, 

      Fluid 2 
ρ2, µ2, c = c2 

r0 

     Fluid 1  
ρ1, µ1, c = c1 
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blue fluid is less viscous while the red fluid is 
more viscous one.  
  

 
 
 

 

Figure 2: From ‘flowers’ to ‘branches’: Spatio-
temporal evolution of fluid saturation s1 for U0 = 2 
mm/s, D = 10-8 m2/s and (a) R = 0 at t = 0, 10, 60 
seconds; (b) R = 2 at t = 2, 10, 60 seconds, (c) R = 3 at 
t = 2, 10, 60 seconds, (d) R = 5 at t = 5, 20, 30  
seconds. Clearly in (b), we have flower-like patterns 
which turn into branches on increasing R, as we move 
to (d). 

 

Also, from the zoomed out part, it is evident that 
on increasing R, the fingering instability is 
observed early, as we see more prominent 
fingers in figure 2(c) than in figure 2(b) at time   
t = 2 seconds. Hence, we can say that more the 
viscosity contrast between the fluids, more 

unstable is the interface. Next, we discuss how 
the viscous fingering instability can be 
suppressed/reduced by changing different flow 
parameters. In our simulations we capture that 
for a fixed R and D, the number of fingers, their 
morphology can be controlled by changing the 
flow rate Q. It is evident that for the same R and 
D as in figure 2, fingering instability reduces 
significantly by reducing the flow rate Q [see 
figure 3]. 

 

  

 
Figure 3: Decrease in the viscous fingering instability: 
Spatio-temporal evolution of fluid saturation s1 for     
D = 10-8 m2/s and (a) R = 1, U0 = 20 mm/s at t = 2, 6, 
10 seconds; (b) R = 1, U0 = 2 mm/s at t = 2, 10, 60 
seconds, (c) R = 2, U0 = 0.5 mm/s at t = 10, 60, 120 
seconds, (d) R = 3, U0 = 0.2 mm/s at t =100, 160, 250  
seconds. From (a) & (b), it is evident how decreasing 
Q, keeping R, D fixed, suppresses fingering instability. 
Same is clear if we compare 3(c, d) with 2(b, c), 
respectively. 
 

This result is in accordance with the linear 
stability analysis (LSA) results of Tan & Homsy 

(a) 

(b) 

(c) 

(d) 

(a) 

(b) 

(c) 

(d) 
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[7]. We know from LSA, that the most 
dangerous wavenumber is directly proportional 
to Q, so decreasing flow rate results in decreased 
maximum wavenumber, hence the most unstable 
wavelength increases. Thus, less or no fingers 
are observed on decreasing Q.  

By keeping Q and R fixed but varying D, we 
could obtain a stable displacement even for 
unstable viscosity contrast between the fluids. 
From figure 4, we notice that whatever R and Q  
 
 
 
 

 
Figure 4: Decrease in the viscous fingering instability: 
Spatio-temporal evolution of fluid saturation s1 for  (a) 
D = 10-7 m2/s R = 1, U0 = 20 mm/s at t = 1, 5, 10 
seconds; (b) D = 10-6 m2/s, R=1, U0 = 20 mm/s at t = 
1, 5, 10 seconds, (c) D =10-6 m2/s, R = 2, U0 = 2 mm/s 
at t = 2, 10, 60 seconds, (d) D =10-6 m2/s, R = 3, U0 = 
2 mm/s at t =2, 10, 60  seconds. From (a), (b) & 3(a), 
it is evident how increasing D, keeping R, Q fixed, 
suppresses fingering instability. Same is observed if 
we compare 4(c, d) with 2(b, c) and 3(c, d), 
respectively. 
 
 
be, for D ≤ 10-6 m2/s, the fingering instability is 
suppressed and the interface undergoes a stable 

displacement similar to the one in R = 0 case, 
see figure 2(a).	 This is in accordance with the 
LSA results of Tan and Homsy [7], that there 
exists a critical Péclet number for the onset of 
instability. Since Péclet number is inversely 
proportional to diffusion coefficient, on 
increasing D, the Péclet number decreases and 
we don’t observe any fingering instability at the 
interface. This can also be explained in terms of 
diffusion-advection dominance. For larger D, the 
diffusive time is always less than the advective 
time [9] and hence, diffusion dominates 
advection so that the fingers are not observed. 

 
 
5. Conclusions 
 
Using COMSOL Multiphysics®, we 
successfully simulate the suppression, decrease 
or increase of miscible VF in radial displacement 
in a 2D homogeneous porous medium by 
varying the parameters R, Q and D. For a fixed D 
and Q, it is observed that the fingering instability 
occurs earlier and the fingers get steeper as R 
increases. A transition from ‘flowers’ to 
‘branches’ is observed with increasing R. On the 
other hand, on increasing D, keeping Q and R 
fixed, the interface was observed to approach the 
stable displacement. This confirms the existence 
of a critical Péclet number for the onset of 
fingers. For a given Q and R, increasing D, 
beyond the limit of the critical value of the Péclet 
number, results into a stable displacement of the 
front. The same can be observed while 
decreasing Q and keeping R and D unchanged. 
Our simulation results are in accordance with the 
linear stability results of Tan & Homsy [7] and 
the theoretical results of Chui et al. [9]. We also 
observed that the tips of forward and backward 
fingers lie on concentric circles as pointed out by 
Bischofberger et al. [10]. Also, we explored how 
to get qualitatively and quantitatively similar 
patterns using different meshing. Understanding 
the pattern formation, fractal dimension, and 
many other interesting features of radial 
displacement of the miscible fluids in 
homogeneous as well as heterogeneous porous 
media are the focuses of our ongoing research. 
 
 
 
 

(a) 

(b) 

(c) 

(d) 
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7. Appendix 
 
A) TABLE OF DATA 
 

Symbols Parameters Value and 
units 

R Log mobility ratio 0, 1, 2, 3, 
5 

U0 Injection velocity 0.002 m/s, 
0.02 m/s 
& 0.05m/s 

µ1 Viscosity of the 
displacing fluid 

1 mPa*s 

ri
 Radius of the 

inlet 
0.002 m 

r0
 Radius of the 

outer circle  
0.058 m 

εp Porosity of the 
medium 

0.5 

κ Permeability of 
the medium 

10-9 m2 

D Molecular 
diffusion 
coefficient 

10-6 – 10-10 
m2/s 

 
B) MESHING: 
 

We verify the dependence on the mesh type 
of the observed fingering dynamics. For this 
purpose, we used three different types of mesh: 
(a) free triangular, (b) mapped, and (c) 
quadrilateral. The free triangular mesh is 
discussed in the main text of this paper. Here, we 
present a brief discussion of the other two mesh 
types. Mapped mesh used for the domain 
discretisation in simulations is constructed using 
Bézier polygon. Distribution properties under 
mapped mesh are adjusted to get the desired 
mesh. Figure below shows a typical mapped 
mesh.  

 
 
 
 

 
 

 
  Figure: Mapped mesh. 
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Initial condition used to ensure the fingering 
instability is : 

 
1,         x2+y2 < r0

2 
   0.01* rn(x,y), x2+y2 < r2  
 

where ‘r’ is to be chosen appropriately for the 
instability to trigger; rn(x, y):R2 → [0, 1] is a 
normally distributed random function with mean 
0.5 and variance 1. Inlet and outlet conditions 
remain the same as mentioned in the section 3. 
The fingering patterns obtained using mapped 
mesh are qualitatively the same as those obtained 
using free triangular mesh. 

  
The quadrilateral mesh (Free Quad) is 

customized and used for the simulations. The 
patterns obtained are quantitatively and 
qualitatively similar to those obtained using the 
triangular mesh [shown in figure below].   
 

              
 

Figure: Spatio-temporal evolution of fluid saturation s1 
at t = 30 seconds, R = 2, U0 = 2 mm/s, D = 10-8 m2/s 
corresponding to free triangular mesh (left) and free 
quadrilateral mesh (right). 

 
C) DIFFERENT SOLVERS:  
 
For the simulations in this paper, we have used 
direct solvers as they are more robust than 
iterative solvers. Different direct solvers, such as 
MUMPS, PARDISO and SPOOLES are used for 
the optimal computation (CPU) time and 
numerical accuracy. It is observed that the direct 
solver SPOOLES is the slowest among the three 
solvers, while the time taken by MUMPS and 
PARDISO are comparable. Among the latter two 
solvers, PARDISO is relatively faster compared 
to MUMPS. The number of the degrees of 
freedom for all the solvers were 42138.  

  
 
 
 
 
 

 
 
 
 
 

     
 
 
 
 
 
Table: Comparison of computation (CPU) time for 
different direct solvers. Parameters used in all these 
simulations are U0 = 2 mm/s and D = 10-8 m2/s. Extra 
fine fluid dynamics triangular mesh is used in these 
simulations.  

 
 

     Parameter 
 
Solver 

 
R = 2 

 
R  = 3 

MUMPS 204 
sec 

378 
sec 

PARDISO 157 
sec 

267 
sec 

SPOOLES 354 
sec 

  - 

c(x,y)  = 
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