
Finite Element Analysis of Ferrofluid Cooling of  
Heat Generating Devices 
 
Tomasz Strek 
Institute of Applied Mechanics, Poznan University of Technology,  
ul. Piotrowo 3, 60-965 Poznan, Poland, tomasz.strek@put.poznan.pl 
 
 
 
Abstract: The viscous, two-dimensional, 
laminar and incompressible ferromagnetic fluid 
flow is considered in this paper. Flow takes place 
in channel between two parallel flat plates. There 
are rectangular blocks (heat-generating devices) 
below the upper wall.In this paper the considered 
ferrofluid flow is influenced by magnetic dipole. 
The magnetic dipole gives rise to a magnetic 
field. Ferrofluids have promising potential for 
heat transfer applications because a ferrofluid 
flow can be controlled by using an external 
magnetic field. A strong magnet placed near the 
device which produces heat will always attract 
colder ferrofluid towards it more than warmer. 
 
Keywords: ferrofluid, Kelvin force, magnetic 
dipole, magnetic scalar. 
 
1. Introduction 
 

During the last decades, an extensive 
research work has been done on the fluids 
dynamics in the presence of magnetic field 
(magnetorheological fluids - MR, ferrofluids - 
FF, electrorheological fluids - ER and certain 
types of polymeric gels). The effect of magnetic 
field on fluids is worth investigating due to its 
innumerable applications in wide spectrum of 
fields. The study of interaction of the magnetic 
field or the electromagnetic field with fluids have 
been documented e.g. among nuclear fusion, 
chemical engineering, medicine, high speed 
noiseless printing and transformer cooling.  

Ferrofluids are industrially prepared 
magnetic fluids which consist of stable colloidal 
suspensions of small single-domain 
ferromagnetic particles in suitable carrier liquids. 
Usually, these fluids do not conduct electric 
current and exhibit a nonlinear paramagnetic 
behavior. The variety of formulations available 
for ferrofluids permits a great number of 
applications, from medical to satellite and 
vacuum technologies [3-5]. 

An external magnetic field imposed on a 
ferrofluid with varying susceptibility, e.g., due to 

a temperature gradient, results in a nonuniform 
magnetic body force, which leads to a form of 
heat transfer called thermomagnetic convection. 
This form of heat transfer can be useful when 
conventional convection heat transfer is 
inadequate, e.g., in miniature microscale devices 
or under reduced gravity conditions. 

A good understanding of the relationship 
between an imposed magnetic field, the resulting 
ferrofluid flow, and the temperature distribution 
is a prerequisite for the proper design and 
implementation of applications involving 
thermomagnetic convection. 
 
2. Governing equations 
 

In this paper the considered ferrofluid flow is 
influenced by magnetic dipole. We assumed that 
the magnetic dipole is located at distance 

b below the sheet at point ( )ba, . The magnetic 

dipole gives rise to a magnetic field, sufficiently 
strong to saturate the fluid. In the magnetostatic 
case where there are no currents present, 
Maxwell-Ampere’s law reduces to 0H =×∇ . 
When this holds, it is also possible to define a 
magnetic scalar potential by the relation 

mV−∇=H  and its scalar potential for the 

magnetic dipole is given by [1] 
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where γ  is the magnetic field strength at the 

source (of the wire) and ( )b,a  is the position 
were the source is located. 

The governing equations of the fluid flow 
under the action of the applied magnetic field 
and gravity field are: the mass conservation 
equation, the fluid momentum equation and the 
energy equation for temperature in the frame of 
Boussinesque approximation.  

The mass conservation equation for an 
incompressible fluid is 

0=⋅∇ v . (2) 
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The momentum equation for magnetoconvective 
flow is modified from typical natural convection 
equation by addition of a magnetic term  
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where 0ρ  is the density, v  is the velocity 

vector, p  is the pressure, T  is the temperature 

of the fluid, η  is the viscosity, k is unit vector 

of gravity force and α  is the thermal expansion 
coefficient of the fluid. 

The energy equation for an incompressible 
fluid which obeys the modified Fourier’s law is 
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where k is the thermal conductivity and Φη  is 

the viscous dissipation  
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The last term in the energy equation 
represents the thermal power per unit volume 
due to the magnetocaloric effects. 

The last term in the momentum equation 
represents the Kelvin body force per unit volume 

( )BMf ∇⋅= , (6) 
which is the force that a magnetic fluid 
experiences in a spatially non-uniform magnetic 
field. We have established the relationship 
between the magnetization vector and magnetic 
field vector 

HM mχ= . (7) 
Using the constitutive relation (relation between 
magnetic flux density and magnetic field vector) 
we can write the magnetic induction vector in the 
form  

( )HB mχµ += 10 . (8) 
The variation of the total magnetic susceptibility 

mχ  is treated solely as being dependent on 

temperature [2] 
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Finally, the Kelvin body force can be 
represented by 
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Using equations (7-9) we can write Eq. (3) and 
(4) in the form, respectively 
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and 
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For simplicity the preferred work choice is to 
work in non-dimensional frame of reference [8]. 
Now some dimensionless variables will be 
introduced in order to make the system much 
easier to study. Moreover some of the 
dimensionless ratios can be replaced with well-
known parameters: the Prandtl number Pr , the 
Rayleigh number Ra , the Eckert number Ec , 
the Reynolds number Re  and the magnetic 
number Mn , respectively: 
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3. Numerical results  
 

This case examines the temperature field in 
the ferrofluid and in the electronic component 
with heat source. The ferrofluid transports heat 
by convection and conduction. Finally, to 
approximates the electronic component that 
requires cooling, the model uses a rectangular 
blocks with a given volume heat source. The 
electronic components transports thermal energy 
by pure conduction. 

The viscous, two-dimensional, laminar and 
incompressible ferromagnetic fluid flow is 
considered in this paper. Flow takes place in 



channel between two parallel flat plates. There 
are rectangular blocks (heat-generating devices) 
below the upper wall. The length of the channel 
is 10=L  and distance between plates is 1=h . 
Outside the channel the magnetic dipole is 
located at point ( )b,a . 

This magneto-thermo-mechanical problem 
considered in these examples is governed by 
following dimensionless equations: 

• momentum equation for 
magnetoconvective flow (Navier-Stokes 
equation) with Kelvin force; 

• mass conservation equation for an 
incompressible ferrofluid; 

• thermal diffusion equation; 
• heat transfer by conduction for solid 

domain is the heat equation. 
 
The following boundary conditions for 
dimensionless variables are assumed: 

• For upper wall: The velocity is 0 (no 
slip condition). Insulation condition for 
heat transfer by conduction (in solid 
domain) ( ) 0=∇−⋅=⋅ Tksnqn  and for 

heat transfer by conduction and 
convection (in fluid domain) 

( ) 0=+∇−⋅=⋅ unqn TcTk fff ρ  

specifies where the domain is well 
insulated. 

• For lower wall: The velocity is 0 (no 
slip condition). Insulation condition for 
heat transfer by conduction and 
convection (in fluid domain) 

( ) 0=+∇−⋅=⋅ unqn TcTk fff ρ . 

• For inlet (left wall): The temperature is 

T

Tl
δ

 where lu TTT −=δ . At the inlet 

boundary there is a parabolic laminar 
flow profile given by equation 

( )14 0 −−= yy
u

u
u

r
in  for 10,y∈ . 

• For outlet (right wall): The convective 
flux is assumed for temperature, 

( ) 0=∇−⋅ Tksn . Pressure outlet is also 

assumed, ( ) nnSI 0pp −=+− , where 

0p  is the dimensionless atmospheric 

pressure.  
• For solid-fluid interface: The velocity is 

0 (no slip condition). Continuity 

equation for heat transfer equation 
( ) 0=−⋅ fs qqn  where Tkss ∇−=q  

and uq TcTk ffff ρ+∇−= . 

 
The following initial conditions for 
dimensionless variables are assumed: fluid is 
motionless (velocity is zero), pressure is zero and 

temperature is 
T

Tl
δ

 for whole domain (with fluid 

and solid). 
 
Table 1. Quantities of fluid 
 
Quantity Variable Unit Value 

Density 0ρ  







3m

kg
 1180 

Viscosity 0η  








⋅ sm

kg
 0.08 

Thermal 
conductivity k  









⋅⋅ Ksm

J
 0.06 

Heat capacity c  








⋅ Kkg

J
 4200 

Thermal 
diffusivity 
(diffusion 
coefficient) 

c

k

0ρ
κ =  









s

m2

 1.21e-7 

Thermal 
expansion 
coefficient 

α   5.6e-3 

Magnetic 
susceptibility 

0χ  - 6e-2 

 
Table 2. Quantities of solid (heat generating devices) 
 
Quantity Variable Unit Value 

Density sρ  







3m

kg
 8960 

Thermal 
conductivity sk  









⋅⋅ Ksm

J
 401 

Heat capacity sc  








⋅ Kkg

J
 384 

Thermal 
diffusivity 
(diffusion 
coefficient) 

ss

s
s c

k

ρ
κ =  









s

m2

 1.165e-4 

Heat source Q  








⋅ 3ms

J
 8.0e+8 



Table 3. Flow parameters 
 
Quantity Variable Unit Value 

Velocity 0u
 

[ ]sm 5.0e-3 

Characteristic 
velocity rv

 
[ ]sm

 

1.210e-7 

Magnetic 
permeability 
of a vacuum 

7
0 104 −⋅= πµ

 
[ ]2AN  1.256e-6 

Difference of 
temperatures 

Tδ
 

[ ]K
 

30 

Temperature 0T  [ ]K  300 

Temp. of 
upper wall 

TTTu δ+= 0  
[ ]K

 
330 

Temp. of 
lower wall

 0TTl =  [ ]K  300 

High , length h , L  [ ]m  1e-3, 1e-2 

Centre of 
magnetic 
wire 

( )ba,  [ ]m  (2e-3,-3e-3) 

Magnetic 
field strength 
at the source

 

γ  [ ]mA ⋅  10 

Ratio of 
thermal 
diffusivities κ

κκ s
ratio =  

- 962.687174 

 
 
 
Table 4. Quantities of flow A and B 
 

Quantity Flow A Flow B 
a  

b  
2 
-3 

2 
-2.5 

rH  1.768388e+5 2.546479e+5 

Pr  560 
Ra  200.7938 

Ec  1.16324e-13 

Re  0.001786 

Mn  2.272182e+9 4.711597e+9 

Qn  64.019097 

avgV (fluid) 292.980369 309.281869 

avgT (fluid) 101.330192 101.314674 

avgT (all) 118.521428 118.261882 

 
 
 
 
 
 
 
 

Table 5. Quantities of flow C and D 
 

Quantity Flow C Flow D 
a  

b  
2 
-2 

2 
-1.5 

rH  3.978874e5 7.073553e+5 

Pr  560 
Ra  200.7938 

Ec  1.16324e-13 

Re  0.001786 

Mn  1.150292e+10 3.635492e+10 

Qn  64.019097 

avgV (fluid) 331.905089 371.38104 

avgT (fluid) 101.096441 100.801837 

avgT (all) 117.760089 117.17941 

 
 
In all tables in this chapter quantities avgV , avgT  

and domT  are calculated using following 

formulas:  

p

A

dAV
p

∫∫= uavg , (14) 

p

A

dATT
p

∫∫=avg , (15) 

dATT
A
∫∫=dom , (16) 

where 88.Ap =  denotes area of ferrofluid and 

10=A  denotes area of channel (fluid and solid).  
 In the flows A, B,C and D magnetic dipole is 
placed below the channel on the line 
perpendicular to the horizontal wall of channel in 
distance 2 from left wall. When the distance 
from source of magnetic dipole to bottom 
channel wall is decreases, it can be observed 
that, due to the value of the characteristic value 
of magnetic field rH , the maximum value of: 

the magnitude of the velocity field of the flow 
increases and the temperature decreases (see 
Table 4 and 5). 
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Figure 1. Comparison of intensity of magnetic field in 
channel: (a) flow A, (b) flow B, (c) flow C and (d) 
flow D for time t=0.5. 
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Figure 2. Comparison of temperature in channel 
and heat generating devices for the different 
flows in channel: (a) flow A, (b) flow B, (c) flow C 
and (d) flow D for time t=0.5. 
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Figure 3. Comparison of velocity field in 

ferrofluid for the different flows in channel: (a) 
flow A, (b) flow B, (c) flow C and (d) flow D for 
time t=0.5. 
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Figure 4. Temperature evolution in channel in flow A 
for time: (a) 0.01, (b) 0.1, (c) 0.3 (d) 0.5. 
 

 



Table 6. Quantities of flow E and F 

Quantity Flow E Flow F 
a  

b  
4 
-3 

4 
-2.5 

rH  1.768388e+5 2.546479e+5 

Pr  560 
Ra  200.7938 

Ec  1.16324e-13 

Re  0.001786 

Mn  2.272182e+9 4.711597e+9 

Qn  64.019097 

avgV (fluid) 300.949913 331.078973 

avgT (fluid) 101.964051 102.076129 

avgT (all) 119.429217 119.129908 

 
Table 7. Quantities of flow G and H 

Quantity Flow G Flow H 
a  
b  

4 
-2 

4 
-1.5 

rH  3.978874e5 7.073553e+5 

Pr  560 
Ra  200.7938 
Ec  1.16324e-13 
Re  0.001786 
Mn  1.150292e+10 3.635492e+10 
Qn  64.019097 

avgV (fluid) 375.238349 445.972581 

avgT (fluid) 102.080147 101.443362 

avgT (all) 118.70548 117.611141 

 
In the flows E, F, G and H magnetic dipole is 
placed below the channel with ferrofluid on the 
line perpendicular to the bottom wall of channel 
at distance 4 from left wall. Again we observed 
that, due to the value of the characteristic value 
of magnetic field, the maximum value of: the 
magnitude of the velocity field of the flow 
increases and the temperature decreases (see 
Table 6 and 7). 
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Figure 5. Comparison of temperature in channel 
and heat generating devices for the different 
flows in channel: (a) flow E, (b) flow F, (c) flow G 
and (d) flow H for time t=0.5. 



4. Conclusion 
 

We have simulated two-dimensional heat 
transfer in ferrofluid channel flow under the 
influence of the magnetic field created by 
magnetic dipole using computational fluid 
dynamics code COMSOL based on finite 
element method. At the left end of rectangular 
channel there was assumed a parabolic laminar 
flow profile. The upper plate was kept at 
constant temperature uT  and the lower at lT . 

The flow was relatively uninfluenced by the 
magnetic field until its strength was large enough 
for the Kelvin body force to overcome the 
viscous force. The magnetoconvection was 
induced by the presence of magnetic field 
gradient. 

We observed that the cooler ferrofluid flows 
in the direction of the magnetic field gradient 
and displaced hotter ferrofluid. Ferrofluids have 
promising potential for heat transfer applications 
because a ferrofluid flow can be controlled by 
using an external magnetic field [6-7]. 

The Kelvin body force arises from the 
interaction between the local magnetic field 
within the ferrofluid and the molecular magnetic 
moments characterized by the magnetization. An 
imposed thermal gradient produces a spatial 
variation in the magnetization through the 
temperature-dependent magnetic susceptibility 
for ferrofluids and therefore renders the Kelvin 
body force non-uniform spatially. This thermal 
gradient induced inhomogeneous magnetic body 
force can promote or inhibit convection in a 
manner similar to the gravitational body force. 

A strong magnet placed near the device 
which produces heat will always attract colder 
ferrofluid towards it more than warmer ferrofluid 
thus forcing the heated ferrofluid away, towards 
the heat sink. This is an efficient cooling method 
which requires no additional energy input. 
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