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= Really, there are sciences in regulatory affair?

= Regulatory affair

= The affairs handled by the U.S. Food and Drug Administration (FDA) - an agency
within the Department of Health and Human Services overseeing Medical
Products and Tobacco, Foods and Veterinary Medicine, Global Regulatory
Operations and Policy, and Operations, for

= Protecting the public health by assuring the safety, effectiveness, quality, and
security of human and veterinary drugs, vaccines and other biological products,
and medical devices, and the safety and security of most of our nation’s food
supply, all cosmetics, dietary supplements and products that give off radiation.

= Regulatory science

= According to the FDA, regulatory science is the science of developing tools,
standards, and approaches to assess the safety, effectiveness, quality, toxicity,
public health impact, and/or performance of FDA-regulated products.

= Why should we care? Unfortunately, it concerns all of us!



= Science of developing tools, standards, and approaches?

= Clearly, regulatory science has been equated to the development of tools,
standards, and approaches.

= Will atool, standard or approach developed based on
incomplete scientific premises help improve the regulatory
processes and pathways?



= What do | mean by incomplete scientific premises?

= Qur limited scientific understanding of the world shaped by our
training in a compartmentalized discipline

= A compartmentalized discipline is a field of study or a trade, in which a set of rules,
codes, ways of doing things is imparted from teachers to students

= The origin of disciplines is likely the result of our cognitive dealing with the world
we live in, through a reductive process

= Reductive thinking helps reduce a complex issue to small independent pieces by
neglecting and discarding as much as possible factors and issues that we have no
knowledge or comprehension of at the moment

= The benefits: in each discipline, specialized knowledge, procedures, and practices
can be imparted to students or trainees

= The problems: it ignores the interwoven issues that signifies the real-world
problems



= A classic example of incompleteness - Blind men and an
elephant

= While we have been laughing at it since childhood, we are still
victims of this exploratory approach in our scientific endeavors
even to this day



Today, pretty much all investigative approaches are reductive
and compartmentalized, hence insufficient for dealing with the
complex biomedical problems

To change that, we need to breakaway from this incompleteness

= By promoting a new way of scientific Introduction to
exploration through seeking
convergence upon integration of
knowledge, understanding, ways of
exploration, etc. from
transdisciplinary fields including the
life sciences, physical sciences,
engineering, social and behavioral
sciences, etc. to address complex

Integrative Engineering

A Computational Approach to Biomedical Problems

problems
Guigen Zhang



= Computational Methods

= On the science and engineering front, the problems need to be examined
with a holistic consideration of all relevant governing principles.

= COMSOL® software is particularly
suited for solving, non- 4§ Computational
reductively and non-destructively, lBioengineering
complex problems that are not
only of mechanical, but also of
electrical, thermal, chemical, and |
biological in nature, which Guigen Zhang
behave according to the
governing laws of
thermodynamics, chemistry,
physics and biology.
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Examples — Cardiovascular related problems

Vascular blood flow and heart valves
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Examples — Soft tissue related problems

Connective tissues and intervertebral discs
Viscoelasticity of connective tissues
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Examples - Hard tissue related problems

Joint prosthesis, bone remodeling, and fixation device

Predicting the perfor

lam

BMU

Quadriceps 4
translation g
or load

Computational model

osteoclasts

ae oe

precursor
e cells ®
L J

-

| |Bone

|| Migrating osteoclast (OC,,)
. Active osteoclast (OCa)

B Bicod vessel (BV)

- Connective tissue stroma
B Partially resorbed bone

B haccessible site

Basic multicellular units and bone remodeling

ligamn

Limiting Vertical Load (N)

mance of joint arthroplasty

WM

o bl IE

vertical
hip load
driceps
©

Torque

Limiting Load

— Stiffness (UB)

— — Stiffness (LB)

Stiffness (linear elastic)

T 50

1 40

T30

T 20

Stiffness (N/mm)

1 10

200 400 600

Wire Pre-tension (N)

800 1000

Nonlinearity in tensioned wires



Examples — Cancer metastasis, etc.
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Modeling based science to aid decision making

Loading modes, stress states and Mohr’s circle
--- Seeing beyond what meets the eyes




= Modeling based science to aid decision making

von Mises or max tensile stress?
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Figure A.9: 3D Mohr's circles and the first, second and third principal stresses.

von Mises stress is not stress in a vector sense. Instead, it is a scalar representation of
the distortion energy (caused by the maximum shear stresses) within a material using
a quantity that carries the units of stresses:
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= A classroom example on decision making

The Brazilian test for brittle materials

1. The tensile strength of brittle materials such as rocks and concrete can be evaluated by performing
a compressive test, known as the Brazilian tensile test. When the specimen crack along the center
vertical line (see figure 1), the tensile strength is taken to be oy = P/mRL, where R is the radius
and L the length of the specimen. and P is the load applied. Build a 2D model to evaluate the
accuracy of this equation and compare the 2D plane-strain and plane-stress results to see which 2D
case represents the actual situation better.

Tensile
crack



Answer No. 1

Surface; von Mises stress (N/m?)
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Answer No. 2

Max tensile stress
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The modeling results predict the highest tensile stress along
the vertical center line with the stress value in very good
agreement with that given by the equation.

The underlying message: if done right, computational modeling (cost effective, quick turn-around, insightful, etc.)
can predict very well the failure modes and failure stresses.



A Case Study of an existing standard: A small punch-out test (ASTM F2977-13),
designed to provide a simpler way to assess material failure, is found to possess a
very complicated stress condition as shown in Fig.1, causing unnecessary
ambiguity in failure modes including tensile, shearing or combined modes of
failure. T RREA—
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For standards, they need to be developed with clinical-relevant
predictive power to inform decision making
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The untapped power of modeling capabilities

Parametrizing computational models Integrated fiber optic WGM needlescopic sensor
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Conclusions:

= |n addition to developing relevant tools, standards, and
approaches, regulatory science should be regarded as the science
of the highest level — the science of making right regulatory
approval decisions, assuring public safety, and promoting
innovation

= Such a science calls for seeking convergence based on
information gained from life and clinical sciences, physical
sciences, computer science, engineering, social and behavioral
sciences, etc.

= COMSOL Multiphysics can play a crucial role to facilitate it!
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