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Abstract: We show that the COMSOL 
Multiphysics® can efficiently simulate the 
diffusion equation (DE) in diffusive optical 
tomography systems. Using our implementation, 
we simulate a frequency domain diffusive optical 
tomography system two order of magnitude faster 
than the standard Monte Carlo method of light 
transport in tissues. This model can be used in the 
design and optimization of diffusive optical 
tomography systems for biomedical applications.  
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1. Introduction 
 

In addition to analyzing medical history and 
conducting physical examination of patients, 
physicians perform various medical diagnostic 
procedures for proper diagnosis of medical 
conditions. These diagnostic procedures include 
several imaging techniques, such as X-ray 
radiography, computed tomography (CT-scan), 
magnetic resonance imaging (MRI). Many of 
these techniques employ X-rays, or other 
electromagnetic radiation, that have harmful 
effects on the human body. For example, X-rays 
are classified as carcinogen, since they can cause 
mutations in human DNA and might lead to 
cancer later in life. However, their utility to 
provide essential information for medical 
diagnosis justifies their use for imaging. Optical 
tomography techniques are quite popular because 
they employ infrared light, which is non-ionizing 
for biological tissues and, thus, lacks the harmful 
effects of X-rays and other ionizing radiation.  

Biological tissues are considered as turbid 
media in which light penetrates to a certain depth 
before being absorbed or scattered. This diffusion 
of light in a tissue provides an opportunity to non-
invasively probing and imaging up to a certain 
depth. Generally, light absorption is much weaker 
than light scattering in most biological tissues. 
The mean free path between photon scattering 
events is on the order of 0.1 mm, whereas the 

mean absorption length can extend to 10 – 100 
mm [1]. Therefore, light scattering is the 
dominant physical phenomenon when dealing 
with propagation of light in biological tissues.  

We may classify optical tomography 
techniques into two main groups: (a) techniques 
based on spatial coherence of light, such as optical 
coherence tomography (OCT) and confocal 
microscopy (b) and techniques based on diffusive 
propagation of light in a tissue, such as diffusive 
optical tomography (DOT) and DPDW methods 
[2]. The techniques based on diffuse propagation 
of light in a tissue can be further classified into 
three main categories based on the type of light 
source used in the process. These techniques are 
summarized in table 1. 

 
Table 1: Techniques based on diffusive 

propagation of light in a tissue 
 

Light Source Diffuse Optical 
Technique 

Continuous Wave 
Light Source 

Continuous Wave 
(CW) methods 

 
Intensity Modulated 

Light Source 
Frequency Domain 

(FD) methods 

Time pulsed Light 
Source 

Time Domain (TD) 
methods 

 
Our work involves DPDW that is a frequency 

domain diffuse optical tomography technique 
employing intensity modulated light sources.   

The ability of DPDW to determine the optical 
properties of tissues is critical for many 
biomedical applications. It is employed to observe 
and analyze cutaneous and subcutaneous tissue 
damage. This imaging technique is a useful aid for 
the diagnosis and treatment of pressure ulcers, 
skin and tissue injuries, wounds and burns.  
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2. Solving the Diffusion Equation using 
COMSOL Multiphysics ® 
 

The operating principle of any optical 
tomography technique is the result of the 
interaction of light with a biological tissue. 
Biological tissues are turbid media, in which light 
propagation and light-tissue interaction are 
modeled analytically by the radiative transfer 
equation (RTE), and can be numerically solved 
using Monte Carlo (MC) simulations [1-4]. Since 
the RTE is numerically costly to solve, it is often 
approximated by the diffusion equation (DE). In 
this work we use the Helmholtz Equation model 
in COMSOL Multiphysics® to solve the DE. 
 
3. Theory 
 
The main physical quantity in RTE is the light 
radiance  (W cm-2 sr-1) which is defined 
as the light power per unit of area travelling in 
the direction at position  and time t [3].  
The RTE is derived from the principle of 
conservation of energy and governs light radiance 
in an infinitesimal volume element [1, 4]: 
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The left hand side of (1) represents the change in 
radiance in the infinitesimal volume element at 
position  and time t in an  direction. The right 
hand side of (1) has all the terms that contribute to 
that change through either gain or loss. For time 
independent or steady state responses, the left 
hand side of (1) is zero. The term  
accounts for the loss of light radiance in the 
infinitesimal volume element at position  and 
time t in the  direction due to divergence. The 
losses due to absorption and scattering are 
accounted for in � .It depends on the 
extinction coefficient, � � 	  where � 
(cm-1) is the absorption coefficient and 	 (cm-1) 
is the scattering coefficient of light. The phase 
function 
  gives the probability that light 
with incident propagation direction  will be 
scattered into the 
 direction. Generally, the 
phase function depends only on the direction 
between the scattered and the incident directions, 
that is 
 
 .  The anisotropy factor, 
g, is defined from the phase function as 


 

�� . Typically for 

biological tissues, g is close to 1. The term 

	 

��


 
 provides the gain in 
light radiance in the infinitesimal volume element 
at position  and time t in the  direction due to 
scattering of light from adjacent volumes.  is the 
speed of light in the medium.  (W cm-3 sr-
1) is the power per unit volume emitted by sources 
at position  and time t in the  direction. 
 
The RTE is difficult to solve analytically, since it 
has six independent variables (x, y, z, θ, φ, t). The 
P1 Approximation for light radiance, given by (2) 
is employed to reduce its complexity which is 
valid when radiance is nearly isotropic that is the 
case in high albedo, 

	��
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, scattering 

mediums like biological tissues. In such mediums, 
photon absorption length � � is much 

larger than the photon scattering length 	 	. 
So light radiances diffuse into the tissue to a 
certain depth before being absorbed. Hence, the 
P1 approximation given by (2) is also known as 
the diffusion approximation [3]: 

�
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�� . (2) 

In (2), the photon fluence rate  (W cm-2) is 
defined as the total power per unit area moving 
radially outward from the infinitesimal volume 
element at position  and time t [3]:  

�� . (3) 

Similarly, the photon flux  (W cm-2) is 
defined as the power per unit area travelling in 
the  direction at position  and time t [3]:    

�� . (4) 

If we integrate the RTE, equation (1), over all 
solid angles, we get a continuity equation relating 
photon fluence rate and the photon flux [3]: 
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, 
(5) 

where (W cm-3) is the total power per unit 
volume emitted radially outward from position  
and time t [3]:  

�� . (6) 

We substitute equation (2) into equation (1) and 
multiply the resulting equation by  and integrate 
over all solid angles to get another relation 
between photon fluence rate and photon flux [3]:  
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Assuming isotropic sources, , 
the integral over Q in equation (7) is zero. 
Moreover, if we assume slow temporal variations 
in photon flux then time derivative of photon flux 
is negligible compared to the rest of the terms on 
the right hand side of the equation (7). With these 
assumptions we obtain at Fick’s law of diffusion 
[3]:  

	 � , (8) 
where 	 	 is defined as the reduced 
scattering coefficient. 
Finally we get the DE for the photon fluence rate 
by substituting equation (8) into equation (5) [1-
3]: 
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(9) 

where  is the photon diffusion coefficient 
defined as 

�
��������� ��������

. 

 
Intensity modulated light sources generate 
fluence rate disturbances that behave as 
overdamped waves which are termed as DPDW. 
In equation (9), if we assume the source term has 
dc and ac parts and can be written in the form 

�� �� � !�. Then the 
DPDW solutions are those that oscillate at the 
same angular frequency as the source and have the 
following general form [1-3]: 

�� � !�, (10) 
Substituting value of ��  in equation (9), we 
have 

  � !�

� � !� �
�

�"����#$%&'

��
�� � !�. 

(11) 

After simplification of equation (11), we have 

  �
 !
� �� . 

(12) 

Equation (12) is the required Helmholtz equation 
that was solved in COMSOL to obtain DPDW.   
The propagation of photons through a medium 
can be modeled by random walks. Each photon is 
assumed to travel in a straight line until an 
interaction with the medium particles occur. 
These interactions result in either scattering, 
random change in propagation direction, or 
absorption of the photon. The average length of 
the photon’s straight line random walk steps 

between these interactions is termed as transport 
mean free path�� 	 �

.   

The validity of the DE for photon fluence rate 
(equation (9)) depends on the following 
assumptions [3]:  
• P1 approximation of RTE (equation (2)) is 

valid that is light radiance is nearly isotropic 
 

o The isotropy condition is satisfied 
when 	 �, and when photon 
propagation distances are large as 
compared to ��. 

o Rule of thumb: 	 � should 
exceed 10. 

• Source Isotropy,  

• Slow temporal flux variations, 
�
�

�����,��
��

� 	  
• Rotational Symmetry, 
 
  

The radiance is no longer isotropic near a 
boundary such as an air-tissue interface. In that 
case the DE needs to be modified to account for 
the Fresnel reflections at the interface. Usually, 
photons escaping the tissue do not come back, 
therefore, the incoming irradiance  ( near the 
boundary is due to the Fresnel reflections of 
radiance that was moving out towards the 
boundary. 
The incoming irradiance  ( is defined as the total 
light power per unit area travelling into the diffuse 
medium at the boundary [3]: 

 (
	̂⋅(*+,

-�#	(#.
	̂⋅(*/,

 (10) 

where -�#	(#. is the Fresnel reflection 
coefficient for light incident upon the boundary in 
a direction  from witihin the medium.  
The partial flux boundary condition (also known 
as Robin boundary condition) that relates the 
fluence rate to its gradient at the boundary is 
calculated by substituting the value of radiance 
from the P1 approximation in equation (2) and an 
appropriate form of Fresnel reflection coefficient 
in equation (10) [3]:     

0  (11) 
Equation (11) gives the fluence rate on the 
boundary. Here, the unit vector  points from 
inside the tissue to outside as shown in Fig. 1 and 
0 is the z-coordinate of the boundary [3]:  
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where #11 is the effective reflection coefficient 
which accounts for the index mismatch between 
the diffusing medium and the air that is given by 
[3 - 5]:  

#11 �2 ��

 
(13) 

where  is the ratio of the index of refraction 
inside and outside the diffusing medium [3 - 5]: 

 (
34�

 (14) 

The value of #11 in equation (13) was 
approximated by Egan and Hilgeman [3–6] and is 
valid for 1.0  2.2. 
 

 
(a)          (b) 

Figure 1. (a) Geometrical model of the tissue (b) 
Tissue cross-section. 

 
In this work, we considered a geometrical model 
of the tissue as in Fig. 1. The w, h and d were large 
compared to the wavelength of the incident light. 
The geometrical model considered has azimuthal 
symmetry about the z-axis such that the photon 
fluence rate only depends on the radial and axial 
cylindrical coordinates ρ and z. 
 
4. Results and Discussion 
 

We obtained DPDW phase (Figure 2) and 
intensity attenuation (Figure 3) at a wide range of 
source - detector separation distances. In Figure 2 
plot (a) is obtained for 0.5% and plot (b) is 
obtained for 2% concentration of intralipid – 
water solution. Figure 3 is plotted for 0.5% 
concentration of intralipid – water solution. The 
refractive indices of water and intralipid are 1.33 
and 1.47 respectively. In Figure 2 plot (a) we have 

	 �� � ��, in plot 
(b) we have 	 �� �

��. The modulation frequency is 100 
MHz and the wavelength of incident light is 685 
nm for readings in Figure 2. For figure 3, 
modulation frequency is 200 MHz and 

wavelength of the incident light is 685 nm. 	
�� � �� for the 

results in Figure 3.  
To achieve a similar accuracy of the 

COMSOL simulation of the DPDW, we needed to 
use 100 times more computer time in the Monte 
Carlo method.  Our results are in agreement with 
Monte Carlo simulations and experimental results 
shown in [8].    
 

 
Figure 2. DPDW phase against source – detector 

separations for two different concentrations of 
aqueous intralipid solution 

 
Figure 3. DPDW intensity attenuation against source 

– detector separation 
 

5. Conclusions 
 
Our simulations of a diffusive optical tomography 
system based on COMSOL Multiphysics® 
produce accurate results two orders of magnitude 
faster than the standard Monte Carlo method of 
light transport in tissues. Therefore, COMSOL is 
a practical tool in the simulation of DPDW in 
optical tomography systems for biomedical 
applications, such as the diagnosis of cutaneous 
and subcutaneous skin damage. 
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