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This optimal control problem Is a sub-topic of project Al wit

Problem Setting

Regional hyperthermia i1s a cancer therapy aiming at heating
arge, deeply seated tumors in order to make them more sus-
ceptible to an accompanying radio or chemo therapy. The
heat is introduced into the human body by absorption of radio-
frequency electromagnetic waves originating from a phased ar-
ray applicator.

Figure 1: Virtual patient in a microwave applicator. Picture
courtesy of Zuse Institute Berlin.

The aim of optimal control of the hyperthermia problem is:

e The tumor should be heated up to the therapeutic tempera-
ture.

e The temperature in the healthy tissue should not be higher
than a compatible temperature.

The temperature distribution is driven by the bio-heat-transfer
equation (BHTE), which is of elliptic type.

We consider the optimal control problem (HYPER):

1
min—/(T—Td)2+/iu2dx
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subject to the elliptic PDE
—V - (AVT) + ag(T — Ts7) = u in (1)
n-(AVT)+ag(T —Ty) =0onT.
Further we have the constraints on the temperature:

Tthera,peutic < T inQwymor
T < Thealthy 0 C\Qtumor -

Theoretical Preparations
We introduce a barrier functional by e.g.

O(T; ) = —p /Q In(T — Ttherapeutic) (2)
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where y Is the indicator function defined by
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We consider now the problem (IP):

min / (T — Ty)? + ru
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— pln(T — Ttherapeutic) + hl(Thealthy —T)dz + XVad<y>

such that (7', «) fulfill the PDE (1).

Barrier (or Interior-Point) methods are extensively investigated
IN some recent papers as e.d. [2], [3], such that we summarize
here the main results without proof.

Theorem (Existence) The Problem (IP) has for every 1 > 0 a
unique solution (7,,u,). The state T, touches the bounds only
on subsets of 2 with measure zero.
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Theorem (Convergence) Let (T, u)* be the uniqgue minimizer of
Problem (HYPER). Then for for every n > 0 the error estimate

(T w) = (T w) || < e/
holds.

Theorem (Optimality system) Let (7),,«,) be the unique min-
imizer of Problem (IP). Assume that 7}, touches the bounds
only on subsets of 2 with measure zero. Then there is an ad-
joint state p such that the pair (7,,,«,) together with p fulfills

e the adjoint equation

—V - (AVp) + agp = / (TN — Td) vdx
()
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nVAp+ap=0 onTl,
e the gradient equation
/(KLUN +plvde =0Yv e L),
0

and
e the state equation (1)

After transforming the optimality system, we can use a non-
linear complementarity function, e.g. the Fischer-Burmeister
function

Opp(T;p) =
(T = To) 4+ ne = \J(T = T2 42 + 21
to Implement the complementarity conditions. By

H(T,p,nqn; ) We sample the optimality system in one func-
tion.

Path-following algorithm

An algorithm in function spaces for our Barrier method is given
by:

Algorithm 1 Barrier Method

Choose 0 < o < 1, 0 < eps,

a initial solution (T, p, na, n)" such that

Tiherapeutic < T° < Theaithy- Ch00OSE p1g > 0. Set k = 0.
while py. > eps

{
HEk+1 = OHE
d* = —9H (T, p, namp)™; 1) " H(T, py 10 )5 bkt 1)
(T, D, Na, M) = (T, p, a, mp)* + d¥ 1
k=k+1
}

Within the while loop we take one Newton step from

(T, p,na,mp)" in direction 0H (T, p, na, np)*. Having defined the
PDESs, implemention of the path-following in COMSOL is quite
simple (cf. also [1]):

mu=1le-1;
while mu>1e-8,
mu = mu*0.85;
fem.const{4} = num2str(mu);
fem.xmesh = meshextend(fem);
fem = femnlin(fem,...
'Init’,fem.sol,...
‘out’, fem’,...
'Damping’, off’,...
'Maxiter’,1);
end

Optimal control of the hyperthermia problem

We simplify our patient in the following way: We consider only
the part of the body (here the leg) where the tumor is situated.
The cut offs of the rest of the body are modeled by do-nothing
boundary conditions. We identify the tumor as an ellipsoid in-
side muscle tissue. We assume the following diffusion and per-
fusion coefficients:

tissue s ap
muscle 0.5 3.8
fat 0.2 1.6
bone 0.3 0.05
tumor 0.2 0.5

Table 1: Thermal conductivity and perfusion coefficients for dif-
ferent kinds of tissue.

The desired temperature and the constraints are defined by
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The lower bound T, guaranties the effect of the hyperthermia,
and T is a safety bound to protect the patient. Note, that 7}, is
defined only in Qumor. Further, we set the outside temperature
T, = 36 and o = 1.2.

By using our algorithm we obtain the optimal solution provided
in Figure 2.
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Figure 2: Optimal temperature T'Heps,

The dark blue colored region is muscle tissue with strong blood
perfusion. The relatively hot region in the center is caused by
the good heat conduction by a coincidental lack of perfusion

iInside the bone. Figure 3 presents the the optimal heat distri-
bution. Blue colors mark regions where the patient should be
cooled.
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Figure 3: Optimal control w#er.
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