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Abstract: We study an optimal control
problem (OCP) subject to a PDE of ellip-
tic type as well as state constraints. The
resulting optimality system contains two
PDEs, one algebraic equation and the so
called complementary slackness conditions,
i.e. dual products between function spaces.
At this point di�erent regularization tech-
niques come into use. In this paper we intro-
duce a Barrier method as one possible way
to regularize state constraints, which leads
to an easily implementable path-following al-
gorithm.

To illustrate this method, we solve �rst
a constructed problem with known solution.
Here, we can verify the rate of convergence of
the path-following method. Second, a sim-
pli�ed hyperthermia problem in 3D is solved
by using COMSOL Multiphysics.

Keywords: Optimal control, bio heat
transfer, Barrier method.

1 Introduction

Optimal PDE control is a challenging �eld
of recent research, with growing impact in
medicine, engineering, constructing etc. The
following optimal control problem is topic of
project A1 within MATHEON.

Regional hyperthermia is a cancer ther-
apy aiming at heating large, deeply seated
tumors in order to make them more suscepti-
ble to an accompanying radio or chemo ther-
apy. The heat is introduced into the human
body by absorption of radio-frequency elec-
tromagnetic waves originating from a phased
array applicator. Figure 1 shows a model of
a microwave applicator.

Fig. 1: Virtual 3D model of a microwave
applicator with a part of a virtual
patient. Picture courtesy of Zuse
Institute Berlin.

From the modelers point of view, the
problem reads: The tumor should be heated
up to the therapeutic temperature, but the
temperature in the healthy tissue should
not be higher than a compatible tempera-
ture. The temperature distribution is driven
by the bio-heat-transfer equation (BHTE),
which is of elliptic type. Our aim is to op-
timize a source for the BHTE that creates
an optimal temperature pro�le in the hu-
man body. The control parameters of the
real word problem are actual the amplitudes
and phase delays of the antennas of the mi-
crowave applicator. The hyperthermia prob-
lem is a typical task for optimal control.

In general, two antithetic strategies of
optimal control are known. First, one can
discretize the problem and optimize it by us-
ing e.g. a nonlinear programming software.
The other way is to �nd optimality condi-
tions for the continuous problem. These con-
ditions are systems of PDEs and algebraic
and/or integral equations. Here, COMSOL
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Multiphysics comes into action.

2 Problem de�nition

To model the regional hyperthermia, we con-
sider the optimal control problem (HYPER):

min
1
2

�
Ω

(T − Td)2 + κu2dx

subject to the elliptic PDE

−∇ · (A∇T ) + a0(T − T37) = u in Ω (1)

~n · (A∇T ) + α0(T − Tb) = 0 on Γ.

Optionally, let point-wise state constraints
be given:

Ttherapeutic ≤ T in Ωtumor.
T ≤ Thealthy in Ω\Ωtumor

The domain Ω ⊂ R3 is the human body
(or a part of it), Γ is the boundary of Ω, i.e.
the skin, or � if we consider only a part of
the body � an intersection.

The temperature T is called the state and
has to be from the space of almost every-
where bounded functions L∞(Ω). A solu-
tion of (1) belongs to this space for space
dimensions N ≤ 3.

3 Theoretical

preparations

In this section we will use the usual �math-
ematical� names for the state, i.e. we will
write y instead of T . Later, when we con-
sider the problem of optimal temperature
control again, we will use the �physical� no-
tation.

3.1 The state constrained

problem

We consider the problem (OCP)

min
1
2

�

Ω

(y − yd)2 + κu2 dx

subject to the PDE (written as operator
equation)

Ay = Bu (2)

and to the state constraints

ya ≤ y ≤ yb a.e. in Ω.

Here, the operator equation is the weak for-
mulation of a PDE in divergence form:

�
Ω

∇vA∇y + a0yv +
�

Γ

α0yv ds (3)

=
�

Ω

uv dx+
�

Γ

gv ds ∀ v ∈ H1(Ω),

cf. e.g. [2]. Let Y be a function space, e.g.
the space H1(Ω) ∩ C(Ω̄) or L2(Ω).

We say a function y ∈ Y is admissible, i�
it ful�lls the inequality constraints. The set
of all admissible states is called the admissi-
ble set Yad.

The objective functional

J(y, u) :=
1
2

�

Ω

(y − yd)2 + κu2 dx (4)

has some important properties:

• it is continuous for all (y, u) ∈
(H1(Ω)∩C(Ω̄)) ⊂ L2(Ω)×L2(Ω)→ R,

• it is strongly convex, i.e. J(θ(y1, u1) +
(1 − θ)(y2, u2)) < θJ(y1, u1) + (1 −
θ)J(y2, u2) for all θ ∈ (0, 1), and

• it is coercive, i.e. ‖J(y, u)‖ → ∞ if
‖(y, u)‖ → ∞.

The next theorem provides the existence of
an unique solution of (OCP).

Theorem 1. If Yad is convex and has non-
empty interior, the functional J is continu-
ous, strongly convex, and coercive, then the
problem

min
y∈Yad

J(y, u)

subject to

Ay = Bu

has a unique solution (y∗, u∗) ∈ Yad×L2(Ω).

We can show that our problem ful�ll the
assumptions of the last theorem.

Theorem 2. Let (y, u)∗ be the solution of
the Problem (OCP). Then, there are La-
grange multipliers ηa and ηb from the space
of regular Borel measures and an adjoint
state p such that the pair (y∗, u∗) together
with p and ηa, ηb ful�lls



• the adjoint equation

A∗p =
�

Ω

(y∗ − yd) v dx

−
�

Ω

v dηa +
�

Ω

v dηb ∀ v ∈ H1(Ω),

• the gradient equation

B∗p+ κ

�
Ω

u∗v dx = 0 ∀ v ∈ L2(Ω),

• the state equation

Ay = Bu,

and

• the complementary slackness condi-
tions (CSC)

�
Ω̄

(y∗ − ya) dηa = 0
�

Ω̄

(yb − y∗) dηb = 0

ηa, ηb, (y∗ − ya), (yb − y∗) ≥ 0 in Ω.

By setting
�

Ω
uv dx = − 1

κB
∗p we can

eliminate the gradient equation. The right-
hand side of the adjoint equation is mea-
sure valued. Consequently, the adjoint state
is less regular than the state. Note, that
in the CSC the measures to the integrals
are ηa and ηb resp. That is not the same
as e.g.

�
Ω

(y∗ − y)ηa dx. The condition
ηa, ηb ≥ 0 means that ηa,ηb are positive mea-
sures rather than a point-wise evaluation.

To implement the CSC we regularize it.
Here, some di�erent techniques are in use.
We mentioned e.g. the Moreau-Yosida reg-
ularization, which makes it necessary to im-
plement a PDE with a smoothed version of
the maximum function on the right-hand-
side in COMSOL Multiphysics. Examples
and more references are given in [1].

3.2 The Barrier Method

Another way to solve OCPs with point-wise
state constraints are Barrier methods. Bar-
rier methods eliminate the constraint(s) by
adding a so called barrier functional, e.g.

b(y;µ) = −µ
�

Ω

ln(y − ya) (5)

+ ln(yb − y) dx+ χYad(y),

to the objective function, which results in
optimality systems with nonlinear couplings
between the PDEs. An algorithm to solve
this optimality system can now easily be im-
plemented in COMSOL.

In (5), χ is the indicator function de�ned
by

χYad(y) =

{
0 if y ∈ Yad
∞ if y 6∈ Yad

.

The Barrier functional has some remarkable
properties:

• b(y) ≤ ∞ if y ∈ Yad and meas{x ∈
Ω | ya(x) = y(x) or yb(x) = y(x)} = 0,

• b(y) =∞ if y 6∈ Yad,.

• b(y)→∞ if y → ∂Yad.

• if y ∈ Yad\∂Yad (i.e. the interior of
Yad) then b(y) is directional di�eren-
tiable in all directions h ∈ L2(Ω) with

b(y)
′
h =

�

Ω

(
µ

yb − y
− µ

y − ya

)
h dx.

We consider now the problem (IP):

min
�

Ω

(y − yd)2 + κu2

− µ ln(y − ya) + ln(yb − y) dx+ χYad(y)

subject to the PDE

Ay = Bu.

Note that this problem does not have any
inequality constraints.

Barrier (or Interior-Point) methods are
extensively investigated in some recent pa-
pers as e.g. [3], [4], such that we will sum-
marize here the main results without proof.

Theorem 3. (Existence of the Central
Path) The Problem (IP) has for every µ > 0
a unique solution (y, u)µ. The state yµ holds
yµ = ya or yµ = yb only on subsets of Ω with
measure zero.

Theorem 4. (Convergence of the Central
Path) Let (y, u)∗ be the unique minimizer of
Problem (OCP). Then for for every µ > 0
the error estimate

‖(y, u)µ − (y, u)∗‖ ≤ c√µ

holds for a c > 0.



Theorem 5. (Optimality system) Let
(yµ, uµ) be the unique minimizer of Problem
(IP). Assume that yµ holds ya(x) < y(x) <
yb(x) almost everywhere in Ω. Then there
is an adjoint state pµ such that (yµ, uµ) to-
gether with pµ ful�ll

• the adjoint equation

A∗pµ =
�

Ω

(yµ − yd) v dx

−
�

Ω

µ

yµ − ya
v dx+

�
Ω

µ

yb − yµ
v dx,

∀ v ∈ H1(Ω)

• the gradient equation

B∗p+ κ

�
Ω

uµv dx = 0 ∀ v ∈ L2(Ω),

and

• the state equation

Ayµ −Buµ = 0.

One di�erence to Theorem 2 is that here
no Lagrange multipliers appear, instead we
have two integrals over rational functions. In
view of later programming in COMSOL, we
reformulate the optimality system in terms
of Lagrange multipliers. By the setting
(ηa)µ = µ

yµ−ya and (ηb)µ = µ
yb−yµ we can

introduce approximations of the original La-
grange multipliers. These approximations
are at least from L1(Ω), which is a better
space than the space of Borel measures. We
insert (ηa)µ and (ηb)µ in the adjoint equa-
tion. To make this formulation valid, the
weak complementary slackness condition

�
Ω

(yµ − ya) (ηa)µ dx = µ (6)

�
Ω

(yb − yµ) (ηb)µ dx = µ

together with the claim

(yµ − ya), (yb − y), (ηa)µ , (ηb)µ ≥ 0 (7)

has to be ful�lled. From the Gradient equa-
tion we get again

−Bu = −
�

Ω

uv dx =
1
κ
B∗p.

Note, that this weak CSC is more regular
than the original one from Theorem 2. Fur-
ther, we remark that by changing the role

of u and v in (3) the operators A and A∗

as well as B and B∗ have the same integral
representation.

We implement the conditions (6) and
(7) by the so called (smoothed) Fischer-
Burmeister function

ΦFB(y, yc, ηc;µ) :=

(y − yc) + ηc −
√

(y − yc)2 + η2
c + 2µ.

It is easy to show that ΦFB(y, yc, ηc;µ) = 0
is equivalent to (y − yc)ηc = µ and (y −
yc), ηc ≥ 0. The Fischer-Burmeister func-
tion is a so called nonlinear complementary
function (NCP).

By

H(y, p, ηa, ηb) :=


A∗p−B(y − yd

−ηa + ηb)
Ay + 1

κB
∗p

ΦFB(y, ya, ηa;µ)
ΦFB(yb, y, ηb;µ)

 ,

(8)

we can sample the optimality system into a
function H. The mapping µ 7→ (y, p, ηa, ηb)µ
is called the Central Path. One can show,
cf. e.g. [4], that this mapping is (Lipschitz)
continuous.

3.3 Path-following algorithm

A conceptual algorithm in function spaces
for our Barrier method is given by the fol-
lowing lines:

Algorithm 1 Barrier Method
Choose 0 < σ < 1, 0 < eps,
a initial solution (y, p, ηa, ηb)

0
such that

ya < y0 ≤ yb. Choose µ0 >
0. Set k = 0.
while µk > eps
{

µk+1 = σµk

dk+1 =
−∂H((y, p, ηaηb)

k;µk+1)
−1H(y, p, ηa, ηb)

k;µk+1)
(y, p, ηa, ηb)

k+1 =
(y, p, ηa, ηb)

k + dk+1

k = k + 1

}

Within the while loop we take only one
Newton step from (y, p, ηa, ηb)k in direction
∂H(y, p, ηa, ηb)k. By this, we construct a
polygonal (in function space) that approx-
imates the Central Path. In Figure 2 we
sketch this method.



(y, p, ηa, ηb)µk

(y, p, ηa, ηb)
k−1

(y, p, ηa, ηb)
∗

(y, p, ηa, ηb)
k

(y, p, ηa, ηb)µk+1

(y, p, ηa, ηb)
k+1

Fig. 2: Sketch of Algorithm 1.

4 Applications

4.1 An academical example

For testing our algorithm, we �rst consider
the following simple example (cf. e.g. [3]):

min
1
2

�
Ω

(y − yd)2 + u2dx,

such that the pair (y, u) ful�lls the elliptic
PDE

−∆y + y = u in Ω
~n · (∇y) = 0 on Γ,

and the point-wise state constraint

ya ≤ y a.e. in Ω.

We set

yd(x1, x2)

= 4−max{−20((x1 − 0.5)2

+ (x2 − 0.5)2) + 1, 0},
ya(x1, x2)

= min{−20((x1 − 0.5)2

+ (x2 − 0.5)2) + 3, 2}.

It can easily be shown that u∗ = 2,
p = −2, y∗ = 2, together with ηa =
max

{
−20

(
(x1 − 0.5)2 + (x2 − 0.5)2

)
+ 1, 0

}
ful�ll the optimality system given by Theo-
rem 2.

Using (8), we can now easily implement
our path-following algorithm in COMSOL.
We use the general form of a PDE. First we
de�ne the function H:

fem.equ.ga = { { {'-yx1' '-yx2'}

{'-px1' '-px2'}

{'0' '0'} } };

fem.equ.f = { {'-y-1/kappa*p'...

'-p+y-y_d(x1,x2)-eta'...

'eta+(y-y_c(x1,x2)-sqrt(eta^2...

+(y-y_c(x1,x2))^2)-2*mu)'} };

To get an initial solution for Algorithm 1,
we solve the problem �rst for µ0 with a
high number (e.g. 50) of possible Newton
steps. Next, we compute an adaptively re-
�ned mesh by using adaption, where the
maximal number of Newton steps is set to
50.

The heart of the program, the path-
following loop, can be simply implemented
by

mu=1e-1;

while mu>1e-8,

mu = mu*0.85;

fem.const{4} = num2str(mu);

fem.xmesh = meshextend(fem);

fem = femnlin(fem,...

'init',fem.sol,...

'out','fem',...

'Damping','off',...

'Maxiter',1);

end

Note, that we now set the number of New-
ton steps to one and turn o� the damping of
the Newton method. This implements ex-
actly the method as described in Algorithm
1. Femnlin returns the warning Returned

solution has not converged which we can ig-
nore: The convergence of the IP-path-
following algorithm is ensured by the choice
of the parameter σ. In our program we set
σ = 0.85. Further, we chose eps = 10−8.

The following �gures show the computed
solutions ỹ = yµeps , p̃ = pµeps and the La-
grange multiplier η̃a = η

µeps
a .

Fig. 3: Numerically computed optimal
state ỹ.



Fig. 4: Numerically computed adjoint state
p̃.

Fig. 5: Lagrange Multiplier η̃a.

Note, that yµ, pµ, and ηµ refer to iter-
ates of Algorithm 1 while yµ, pµ, and ηµ are
points on the central path. Note further, the
scale of the z-axis in Figure 3 and 4 is 10−4.
In Figure 5 some peaks appear on the bor-
der of the active set, i.e. the subset of all
x ∈ Ω where ηa > 0. This causes the rather
large errors of the Lagrange multiplier, cf.
Table 1. One can �nd the in�uence of these
peaks also in the adjoint state pµ, cf. Fig-
ure 4. Here, by µ → 0 the NCP-function
becomes non-di�erentiable in points where
ηa = 0 and (y − ya) = 0.

Having exact optimal solutions at hand,
we are able to determine errors between e.g.
yµ and y∗. Table 1 shows the convergence of
yµ, pµ, and (ηc)µ.

µ ‖ỹ − y∗‖L2 ‖p̃− p‖L2 ‖η̃c − ηa‖L2

10−2 2.09 · 10−2 2.09 · 10−2 1.28 · 10−1

10−3 2.12 · 10−3 2.12 · 10−3 5.62 · 10−2

10−4 2.17 · 10−4 2.10 · 10−4 2.06 · 10−2

10−5 2.23 · 10−5 2.23 · 10−5 9.036 · 10−3

10−6 2.29 · 10−6 2.29 · 10−6 8.34 · 10−3

10−7 1.99 · 10−7 2.11 · 10−7 1.18 · 10−2

10−8 2.03 · 10−8 6.94 · 10−8 1.22 · 10−2

Tab. 1: Results to Example 1.

In Figure 6, the linear convergence in
state yµ and adjoint state pµ (and by uµ =
1
κp

µ also in uµ) is visible.

Fig. 6: Errors ‖yµ − y∗‖L2(Ω), ‖pµ −
p∗‖L2(Ω) and ‖(ηa)µ − ηa‖L2(Ω).
Both axis are scaled logarithmically.

The error in the Lagrange multiplier
stagnates for µ < 10−5. This is caused by
the discretization error and the peaks result-
ing from the numerical destabilization of the
method for very small µ. This is not a draw-
back of this method, but one task when using
regularizations is to �nd a balance between
disturbing the problem and the improvement
for the behavior of the method by the regu-
larization. In this example the path follow-
ing should be stopped at eps = 10−5.

4.2 The optimal control of the

thermoregularization

In this section we return to the problem
(HYPER). We simplify our patient in the
following way: We consider only the part of
the body (e.g. the leg or a part of it) where
the tumor is situated. The cut o�s of the
rest of the body are modeled by do-nothing



boundary conditions. We identify the tu-
mor as an ellipsoid inside the muscle tissue.
In the di�erent kinds of tissue we have the
following di�usion and perfusion coe�cients.

tissue aii a0

muscle 0.5 3.8
fat 0.2 1.6
bone 0.3 0.05
tumor 0.2 0.5

Tab. 2: Thermal conductivity and perfu-
sion coe�cients.

The desired temperature and the con-
straints are de�ned by

Td =

{
45 x ∈ Ωtumor
any x ∈ Ω\Ωtumor

,

Ttherapeutical =

{
45 x ∈ Ωtumor
36 x ∈ Ω\Ωtumor

,

and

Thealthy =

{
48 x ∈ Ωtumor
41 x ∈ Ω\Ωtumor

.

The lower bound Ta guaranties the e�ect of
the hyperthermia, and Tb is a safety bound
to protect the patient. Note, that Td is de-
�ned only in Ωtumor. Further, we set the
outside temperature Tb = 36 and α0 = 1.2.

By using our algorithm we obtain the op-
timal solution provided in Figure 8.

Fig. 7: Optimal temperature Tµeps .

The dark blue colored region is muscle
tissue with strong blood perfusion. Note the
relatively hot region in the center. This is
caused by the good heat conduction by a co-
incidental lack of perfusion inside the bone.

Figure 8 presents the optimal heat distribu-
tion. Blue colors mark regions where the
patient should be cooled.

Fig. 8: Optimal control uµeps .

5 Conclusion

Having access to the optimality system in-
ybblingn PDE form, COMSOL Multiphysics
provides by its capability to solve coupled
non-linear systems of PDEs an easily imple-
mentable way to solve optimal control prob-
lems. An algorithm based on barrier meth-
ods was successfully tested on an academical
problem with known solution as well as on
the 3D hyperthermia model problem. Ap-
plicability of this method to other realistic
problems has to be decided depending on the
complexity of the problem.
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