Uniform Reaction Rates and Optimal Porosity
Design for Hydrogen Fuel Cells

Jamal Hussain Al-Smail

Department of Mathematics and Statistics

King Fahd University of Petroleum and Minerals (KFUPM)

October 6, 2016

COMSOL

CONFERENCE
2016 BOSTON




1. Introduction

Consider the 2d cross-section of hydrogen fuel cell along the gas channels
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Chemical reactions and Electricity production

Anode: 2Hy — AHT + 4de™

Cathode: 4H' 4+4e™ + 0y — 2H,0 + Heat

The electrons travel from the anode to the cathode through an external circuit

generating electrical power.




2. Literature Review

A gentle walk through literature review for fuel cells optimization:
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o Kermani, et all: 2004, Novruzi, et all: Feb, 2004:
reaction rate is not uniform on CL

e Novruzi, et all: Jul, 2004:
water accumulation occurs where reaction is low

e Secanel, et all: 2007:
maximizing the current density on the cathode CL by optimizing the platinum

loading and gas diffusion layer porosity

e Secanel, et all: 2007-2010:
optimizing the cathode and anode assembly to maximize the current density

e Mawardi, et all: 2005:
optimizing the operating conditions to maximize the current density




e Song: 2004, et all:
optimizing the cathode CL thickness to maximize the current density

o Grujicic: 2004, et all:
optimizing the cathode dimensions and inlet pressure to maximize the current
density
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o Kumar: 2003, et all:
testing rectangular, triangular and hemispherical cathode air channels to
maximize the current density

e Jamekhorshid: 2011, et all:
the importance of uniform current density

e Santis: 2006, et all:
optimizing the catalyst loading to have the current density even on the cath-
ode CL




2.1. Experimental Findings:

The current density or the reaction rate is not uniform on the cathode catalyst, E
which results in the following problems

e drying out of the membrane in regions with hight reaction rates
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e water accumulation in regions with low water transport

e non-optimum usage of the cathode catalyst




3. Optimal Porosity Design of the GDL

Optimal Porosity . . .
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Objective: to find an optimal porosity function 0.4 < g(z) < 0.74 that minimizes
the efficiency cost functional

E(e) := éle) — é(e) ’ dz, (1)
M

subject to the state equations describing the fluid dynamics in the GDL. Here, a
and b are given nonnegative parameters.
Take

e(x) = Ei]ilsifi(m), 04<¢ <038




3.1. Mathematical Modeling

Assumptions: steady state, isothermal, single gas phase

Let ¢, (or simply ¢&), é,, ¢, denote the mass fractions of oxygen, nitrogen and
water vapor, and Ug, Py, pg denote the velocity, the pressure and the density of the
mixture.

3.1.1. In the GDL:

Using the method of volume averaging, the state of the system in G is modeled by
e Conservation of total mass
V- (pgtg) =0, (2)
where 0, is the superficial or extrinsic velocity.
e Conservation of momentum (Darcy equation)
uy = —k(e)Vpy, (3)

where P, is the intrinsic pressure of the mixture, and K (¢) is the permeability
K(g) of the GDL divided by the dynamic viscosity p of the mixture.
Hence,

=V - (pgk(e)Vig) = 0. (4)
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e Mass conservation of oxygen and nitrogen gives
VN, =V (=Dy(e)pgVé, + pyéotig) =0,

V- Ny =V (=Dn(e)pgVen + pglnly) =0,

where ¢, and ¢, are the extrinsic mass fractions of oxygen and nitrogen, and
D(e) is the effective diffusivity, which is a function of .

Previous Findings: the gas density p,; and the nitrogen mass fraction ¢, can be
assumed constant. This simplifies calculations as well.
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3.2. GDL Mathematical Model
The physics in the GDL is the described by then“reduced” Darry low E
V- (k(5)Vpy) = 0
and the advection-diffusion equation for oxygen
V. (_D(E)vc + cu) = 07 Optimal Porosity . . .
where
u = —k(e)Vpg.
3.2.1. Boundary Conditions:

e Let’s assume that
pg =px and ¢ =cx

are both given on X.
e On the walls of the GDL,

up =0 and N, -v =0.

Since uy = —k(e)dipg,
k(e)0ipg =0 on Ty,




3.2.2. Catalytic Reaction:

e On the catalyst layer M, we have the Reaction Boundary Conditions: E

PgUa = No - v+ Ny - v

1 -1
MNO‘Vszw.V
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2Ht + 502 + 2~ — H>0 + Heat

Also, the current density

. 1
i(r) =4F x <M0N° . V)
and from Butler-Volmer equation
2i,C aF
() = 29C o [ Qet
i(z) o7 sin < AT 7))
Hence

N, -v=Hpec,

and
up = —K(g)0apg = —fmc




3.3. Weak Formulation
Let g be a test function such that ¢ = 0 on X. Then, the “reduced” Darcy is written E
as
0 = [ Ken, Vo [ (o)
G dg

= / k(s)Vpg : Vq - / (ﬂmc)q Optimal Porosity . . .
G M -

Find p € HL(G) such that

/ k(e)Vp-Vq— / (Bmc)q = 0, for allqg € HL(G).
G M

Similarly, a weak form for the advection-diffusion equation reads:

Find ¢ € HL(G) such that
/ [D(e)Vé— K(e)Vpy - ¢] - Vo + / Hpép =0,
G M

for all p € HL(G).




3.4. Porosity Optimization
Recall that

and the optimal porosity

" = (e],e5, . EN)

is found by the Gradient Descent Method

6?4_1 = E:’il - aEiE(En)a

where 0; F(e™) requires O.,c for all i =1,2,..., N.
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But 0.,c =: ¢ satisfies
[ evp-va+ [ 1D9e- vy Ve Ve E
G G

+/ k(e)Vp' - Vg — / (Bmc)q
G M

—i—/ [D(e)Vd —k(e)Vp'c — k(e)Vp- ] -V Optimal Porosity . ..
G

+ | H,dp=0,
M

for all p,q € HL(G).

Remark: It is computationally very expensive to solve this system “N” times for
each iteration.




3.5. Adjoint System
Now we choose particular ¢, ¢ € H&(G) making the terms involving p’ and ¢’ equal E

to zero, integrate by parts and use 9, = d,¢g =0 on I,
/ k'Vp-Vq—i—/ [D'Ve—K'Vp-Vc]- Ve
/ V- [k(Vg—2eVe)p — / [V - (DV)+kVp- Vel Optimal Porosity ...
G

/ k(0yq — ¢d,)p’ +/ (DO + Hip — Bmq)c =0
Since

0.56) = [ o)

we set
Do, + Hyp — Bmg = —g(¢) on M.

Since also p’ is unknown on M, we set

k(0,q — éd,p) =0 on M.




The adjoint system defined as

I) -V (kVq) =V - (éVy) in G E

X:q=0, Ty:0,g=0

M : k(0yq — ¢é0,p) =0
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Coupled with
IT) V- (DVy) —kVp-Vo=0
Y:ip=0, Ty:0,0=0

M :DOyp+ Hpyp — Bng = —g




Then
0.,E(e) = / gc
M
= / [k'Vp-Vq+ (D'Vé—K'Vp-e)V
G

where ¢, p are the solutions of the state equations, and ¢, g are the solutions of the
adjoint equations.

Remark: For each e— iteration, we only need to solve the state and adjoint equation
to obtain on optimal porosity by means of

et =" — 9., E(e").
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4. Numerical Results

porosity of GDL in x-direction
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4.1. Effect of the Geometric Design of I" on the FC

Designing the shape of I' so that

the oxygen mass flux N, y is as uniform and as large as possible on the catalyst
layer (CL)

and the in/out pressure drop pin — Pout 2long the channel as small as possible.
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Or equivalently, find I" that minimizes the following cost functional:

B(T) = /M (No,y - % /M No,y>2,

where a,b and e are some given nonnegative constants.

The variables N, , and p;, are obtained through a state problem solved on
A and G.




4.2. Optimal Design of the Air Channel
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This shape design of I improves the FC’s efficiency as
e the catalyst layer is entirely used by the reactants

e accumulation of water and heat is reduced
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