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Abstract: The velocity field of a fluid flow in an
unbounded domain, R, in which the spin of fluid ele-
ments is nonzero only within a bounded subdomain,
Ri—namely, the interior of a sphere of radius, a—is
simulated by equation-based modeling. A change of
independent variable motivated by Kelvin Inversion
(Ref. 1) maps the region exterior to Ri, hereinafter
denoted Re, to a proxy domain, Q, in the form of
a spherical ball whose radius is also a. The simula-
tion involves simultaneous solution of the boundary-
value problems for the physical velocty in Ri and a
proxy velocity in Q and the results recover those of
a 19th century analytical solution known as Hill’s
spherical vortex (Ref. 2).
Keywords: Unbounded domains, Concentrated
vorticity, Kelvin Inversion

1. Hill’s spherical vortex
Suppose the fluid is inviscid and incompressible. If u
denotes the velocity then the incompressibility con-
dition is

divu = 0 . (1.1)
Hill’s spherical vortex is axisymmetric. The mo-
tion outside of a sphere of radius a is irrotational
and steady in time as seen by an observer who
moves with the sphere. Consider a circular fluid
filament inside the sphere. The filament is cen-
tered on the axis of symmetry of the overall mo-
tion and its plane is normal to that axis. The ra-
dius of the filament and its latitude angle relative
to the sphere vary with time and the fluid in the
filament is subject to stretching and compression in
the azimuthal direction during the motion. By ap-
peal to Helmholtz theorems of vortex motion one
may deduce that the intensity of the vorticity—all of
which is azimuthal—increases or decreases in direct
proportion to the stretching or compression of the
filament in the azimuthal direction. Hill’s spheri-
cal vortex abides by this requirement by postulating
a vorticity field of the form

curlu =
⇢

(Âı3)⇥ r , for r  a
0 , for r > a

. (1.2)1,2

Here A is a given constant, ı̂3 is a constant unit
vector parallel to the axis of symmetry, and r is

the position vector,
�!
OP , from the center, O, of the

sphere to a typical point, P , inside it.
Let v denote a generic vector field and let rv

and (rv)T denote its gradient the transpose of its
gradient, respectivley. If a is any other vector then

[rv � (rv)T ]a = curlv ⇥ a (1.3)

is an identity. Gurtin (Ref. 3), for example, uses
(1.3) as a definition of the curl of a vector. The point
here is that there is a one-to-one corresondance be-
tween curlu and the skew tensor ru� (ru)T . Let
W denote the skew tensor that equals ru� (ru)T

inside Hill’s spherical vortex. Within Hill’s spher-
ical vortex, then, u satisfies the equation

ru� (ru)T = W . (1.4)

In view of (1.3) W must satisfy W (a) = [ru �
(ru)T ](a) = curlu⇥ a = [(Âı3)⇥ r]⇥ a. It follows
from the expansion of the vector triple product and
the definition of the tensor product* that

W = A(r⌦ ı̂3 � ı̂3 ⌦ r) . (1.5)

2. Variational principle for the flow in-
side Hill’s spherical vortex

In Ri consider the problem of minimizing the ex-
presson F defined by

F :=
ZZZ
Ri

{(divu)2+(1/4)kru�(ru)T�W ]k2} dV

(2.1)
over all smooth functions r 7! u. Here dV is the
volume of a typical small part of Ri. Equation (2.1)
employs the notation kSk2 := S •S for the square-
norm of a tensor, S. The inner product, A •B, of
tensors A and B is defined by the rule A •B :=

* For any two given vectors, a and b, their tensor
product, denoted a⌦ b, is a linear vector-to-vector
operator whose action upon a third vector, v, is
defined by the rule (a⌦ b)v = a(b •v).
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tr (AT B), in which tr ( .) denotes the trace operator
and ( .)T denotes the transpose. Note that F is non-
negative by construction. Moreover, F attains the
value zero when u satisfies equations (1.1) and (1.4).
By requiring the first variation, �F , of F to be zero
for arbitrary variations, �u, of u within Ri and on
@Ri one my derive a the di↵erential equation for u
in Ri (a.k.a. the Euler-Lagrange equation) for
the variational problem and a natural (a.k.a. flux-
source) boundary condition for u on @Ri.

To be specific, if one takes the first variation
of (2.1), applies some identites*, and introduces the
abbreviation

� := 2(divu)I +ru� (ru)T �W (2.2)

one may arrange the result in the form

�F �
ZZZ
Ri

� •r(�u) dV = 0 . (2.3)

If one sets �F to zero (as is appropriate when F
attains a minimum) and interprets the first varia-
tion, �u, of u as what the COMSOL documentation
denotes by v and calls a test function then equa-
tion (2.3) becomes what that documentation calls
the weak form.

By application of some more identities† one
may write (2.3) in the equivalent form

�F +
ZZ
@Ri

�u •[��(n̂)]dA +
ZZZ
Ri

�u •div� dV = 0 .

(2.4)
Here dA is the area of a typical small part of @Ri

and n̂ is the outward unit normal vector on that

* Three such identities are: (i), the divergence of
a vector field equals the trace of its gradient; (ii) the
trace of any tensor equals the inner product of that
tensor with the identity, I; and (iii), the inner prod-
uct of two tensors equals zero whenever one factor
is symmetric and the other is skew.

† One such identity [cf. Gurtin (Ref. 3), equa-
tion (4.2)5 on p30] is the di↵erentiation formula
div [ST (v)] = S •rv + v •divS (in which v and S
are generic vector and tensor fields); another is the
divergence theorem; and third is the definition of the
transpose, according to which ST (a) •b = a •S(b).

surface. If F is a minimum then �F = 0 subject to
arbitrary variations �u on @Ri and in Ri. Equation
(2.4) then implies that

div� = 0 , ��(n̂) = 0 , (2.5)1,2

which constitute the Euler-Lagrange equation
and the natural boundary condition, respectively.
The system consisting of (2.2) and (2.5)1 is suit-
able for input to the COMSOL general form PDE
physics interface and (2.5)2 is the corresponding null
flux boundary conditon.

The solution for u of the minimization prob-
lem as posed thus far is not unique. To see why
note that replacement of u by u + r' will leave
the expression under the integral sign in (2.1) un-
changed provided rr' � (rr')T = O—which is
always the case—and div (r') = 0. There are, of
course, infinitely many solutions of div (r') = 0 in
Ri so if there is one vector field u in Ri for which
F is zero there must be infintely many of them.
To remove this ambiguity one may recall that the
most general solution of the problem consisting of
the equation div (r') = 0 subject to the boundary
condition r' • n̂ = 0 in a simply connected domain
(a.k.a. the homogeneous Neumann problem) is a
constant. But the gradient of a constant is the zero
vector so r' must reduce to 0 in that case. Now a
boundary condition that specifies r' • n̂ in classical
potential theory corresponds one that specifies u • n̂
in the problem of minimizing F , i.e. to a boundary
condition of the form

u • n̂ = m , (2.6)

in which r 7! m is subject to the constraint that the
total volumetric outflow across @Ri be zero (as in-
compressiblity requires) but is otherwise arbitrary.
If the observer for whom u is the fluid velocity is at
rest relative to the boundary sphere then m in (2.6)
is identically zero.

3. Variational principle for the flow
outside Hill’s spherical vortex

In Re consider the problem of minimizing the ex-
presson F defined by

F :=
ZZZ
Re

⇥
(divu)2 + (1/4)kru� (ru)T ]k2

⇤
dV

(3.1)
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over all smooth functions r 7! u. The fact that Re

is unbounded poses both practical and mathemat-
ical challenges. One way of addressing these chal-
lenges is precede the treatment of the minimization
problem for F by a change of independent variable
r ! q, which maps points in the original domain,
Re—which is not bounded—to points in proxy do-
main, Q, which is. To this end, let a > 0 be a given
constant length and let r and q denote the mag-
nitudes of the vectors r and q, respectively. One
may then define a change of variable r ! q by the
following equations:

r/r = �q/q , a2 = rq . (3.2)1,2

One may visualize r and q as position arrows spring-
ing from a common point, namely the center of the
boundary sphere r = a or q = a. If the minus sign in
(3.2)1 were replaced by a plus sign then the result-
ing change variable r ! q would represent Kelvin
inversion, as introduced by Kelvin in 1845 (Ref. 1)
and employed in classical treatises on potential the-
ory since then [e.g. Kellogg (Ref. 4, Chapter IX,
§2]. I will postpone the discussion of my reason for
introducing the minus sign in (3.2)1 until after I
have discussed an orthogonal curvilinear coordinate
system that arises naturally in this problem.

I introduced the constant unit vector, ı̂3, in
(1.2)1 above. Now let ı̂1 and ı̂2 be any two con-
stant unit vectors chosen such that {̂ı1, ı̂2, ı̂3} forms
a right-handed orthogonal system. One may expand
a generic vector v into components with respect to
{̂ı1, ı̂2, ı̂3}, viz. v =

P3
i=1 vîıi. Here and elsewhere,

italic symbols with numerical subscripts denote the
scalar components with respect to {̂ı1, ı̂2, ı̂3} of a
vector denoted by the corresponding letter, without
subscripts, in bold face.

According to this convention once {̂ı1, ı̂2, ı̂3} is
fixed the list (q1.q2, q3) determines q, and the system
(3.2)1,2 then determines r, so (q1, q2, q3) 7! r is now
a known function and (q1, q2, q3) constitutes a set
of curvilinear coordinates. One may show that this
curvilinear coordinate system is orthogonal, i.e.

(@r/@qi) •(@r/@qj) = 0 for i 6= j (3.3)

It will be convenient at this point to recall some
textbook results that apply to all orthogonal curvi-
linear coordinate systems [i.e ones which satisfies

(3.3)]. Given any orthogonal curvilinear coordinate
system, one may associate each coordinate, qi, with
a corresponding scale factor, hi, defined by

hi := k@r/@qik , i 2 {1, 2, 3} . (3.4)

From (3.3) and (3.4) one may construct a system
of unit vectors êi := (1/hi)(@r/@qi) i 2 {1, 2, 3}
belonging to any orthogonal curvilinear coordinate
system. Having the system {ê1, ê2, ê3} one may
expand a generic vector v into components with
respect to that system, i.e. v =

P3
i=1 ve

i êi, in
which the scalar components (ve

1, v
e
2, v

e
3) are not to

be confused with the scalars (v1, v2, v3) in the expan-
sion v =

P3
i=1 vîıi. Textbooks that treat orthogo-

nal curvilinear coordinates [e.g. Phillips (Ref. 5,
pp 88–90) and Hildebrand (Ref. 6, pp 306–311)]
include derivations of expansions of the divergence
and curl of a generic vector, v, and of the gradi-
ent of a generic scalar, ', with respect to orthog-
onal curvilinear coordinates. These authors, and
others, assume in their derivations that the system
{ê1, ê2, ê3} is right-handed. It so happens that the
omission of the minus sign in the definition (3.2)1
above would result in a left-handed system. This
fact drove my decision to employ an inversion rule
motivated by Kelvin’s but not Kelvin Inversion
proper. Returning, now, to the textbook results one
may write them in the following forms:

divv =
1

h1h2h3

3X
i=1

@

@qi

✓
(h1h1h3 ve

i )
hi

◆
, (3.5)

curlv =
3X

i=1

3X
j=1

êi ⇥ êj

hihj

@(hjve
j )

@qi
, (3.6)

and

r' =
3X

i=1

êi

hi

@'

@qi
. (3.7)

One may employ (1.3) to deduce the corresponding
representation of rv � (rv)T with respect to or-
thogonal curviliner coordinates as follows. If a is
any vector equation (3.6) implies that

curlv ⇥ a =
3X

i=1

3X
j=1

[(êi ⇥ êj)⇥ a]
hihj

@(hjve
j )

@qi
, (3.8)
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But (êi ⇥ êj) ⇥ a = (êi •a)êj � (êj •a)êi = (êj ⌦
êi � êi ⌦ êj)a, so (3.8) is equivalent to

 3X
i=1

3X
j=1

(êj ⌦ êi�êi ⌦ êj)
hihj

@(hjve
j )

@qi

�
(a)=curlv ⇥ a.

(3.9)
Since the right members of (1.3) and (3.9) are equal
their left members must be equal as well for all a.
The operators that act upon a must then be equal,
i.e.

rv� (rv)T =
3X

i=1

3X
j=1

(êj ⌦ êi � êi ⌦ êj)
hihj

@(hjve
j )

@qi
.

(3.10)
The discussion in the paragraphs containing

(3.4) through (3.10) applies to all orthogonal curv-
liner coordinates systems. I will now revert to the
discussion of the particular orthogonal curvilinear
coordinate system defined by (3.2)1,2 and the sys-
tem {̂ı1, ı̂2, ı̂3}. Here, one finds that

h1 = h2 = h3 := h = (a/q)2 . (3.11)

Equations (3.5), (3.10), and (3.7) then take the sim-
pler forms

divv =
1
h3

3X
i=1

@(h2ve
i )

@qi
, (3.12)

rv� (rv)T =
1
h2

3X
i=1

3X
j=1

(êj⌦ êi� êi⌦ êj)
@(hve

j )
@qi

,

(3.13)

r' =
3X

i=1

êi

h

@'

@qi
, (3.14)

respectively.
Let Q denote the linear vector-to-vector oper-

ator—i.e. the tensor—that takes ı̂i to êi, i 2
{1, 2, 3}. Then êi = Q(̂ıi). Since Q takes unit vec-
tors to unit vectors, it must have the feature that the
magnitude of its input must equal the magnitude of
its output. Such an tensor is called orthogonal and
has the feature that its transpose equals its inverse.
In view of the identities êi = Q(̂ıi) we have

ve
i = êi •v = Q(̂ıi) •v = ı̂i •QT (v) , (3.15)

so (3.12)–(3.14) are equivalent to

divv =
1
h3

3X
i=1

@ [̂ıi •QT (h2v)]
@qi

, (3.16)

rv � (rv)T =
1
h2

3X
i=1

3X
j=1


Q(̂ıj)⌦Q(̂ıi)

�Q(̂ıi)⌦Q(̂ıj)
�
@ [̂ıj •QT (hv)]

@qi
, (3.17)

r' =
1
h

3X
i=1

Q(̂ıi)
@'

@qi
, (3.18)

respectively. If a and b are any two vectors and S is
any tensor then two rules of tensor algebra state that
S(a⌦b) = S(a)⌦b and (a⌦b)S = a⌦ST (b) [See
e.g. Gurtin (Ref. 3, p9, Exercises 6 a,b)]. From
these general rules one may deduce, for example,
that Q(̂ıj) ⌦ Q(̂ıi) = Q(̂ıj ⌦ ı̂i)QT , Thus (3.17) is
equivalent to

rv � (rv)T =
1
h2

Q

 3X
i=1

3X
j=1

(̂ıj ⌦ ı̂i

�̂ıi ⌦ ı̂j)
@ [̂ıj •QT (hv)]

@qi

�
QT . (3.19)

One may express these results more compactly by
introducing some abbreviations. To this end, let

3X
i=1

@vi

@qi
=

3X
i=1

@(̂ıi •v)
@qi

:= divq v , (3.20)

3X
i=1

ı̂i
@'

@qi
:= rq ' , (3.21)

3X
i=1

3X
j=1

(̂ıi⌦̂ıj)
@vi

@qj
=

3X
i=1

3X
j=1

(̂ıi⌦̂ıj)
@(̂ıi •v)

@qj
:= rq v .

(3.22)
Then equations (3.16), (3.19), (3.18) takes the more
compact forms

divv =
1
h3

divq [QT (h2v)] , (3.23)
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rv � (rv)T

=
1
h2

Q{rq [QT (hv)]�rq [QT (hv)]T }QT , (3.24)

r' =
1
h

Q(rq ') , (3.25)

respectively.
Returning, now, to the variational principle

(3.1) one may transform the right member from an
integral over the physical exterior domain, Re, to
one over the proxy domain, Q, by application of the
transformation rules (3.23) and (3.24) in the case
when the generic vector, v, is the fluid velocity, u.
In carrying out this transformation the volume ele-
ment transforms according to the rule dV = h3dVq,
in which dVq is the volume of a typical small part
of Q. The simplicity of this rule is due to both the
orthogonality of the coordinates and the equality of
three scale factors, as stated in (3.11). Equation
(3.1) thus becomes

F :=
ZZZ

Q


1
h6

{divq [QT (h2u)]}2

+
1
4

����Q{rq [QT (hu)]�rq [QT (hu)]T }QT

h2

����
2
#

h3dVq,

(3.26)

which one may simplify in three ways, namely: (i)
by cancellation of common powers of h in the numer-
ator and denominator under the integral sign; (ii),
by introducing the change of variable u ! U de-
fined by QT (hu) := U; and (iii), by appealing to an
algebraic rule according to which kQSQT k2 = kSk2
for any tensor, S, and orthogonal tensor, Q. The
resulting simplified form of (3.26) is

F :=
ZZZ

Q


1
h3

{divq (hU)}2

+
1
4h

��[rq (U)�rq (U)T ]
��2

�
dVq . (3.27)

At this point the reasoning follows logic simi-
lar to that described in the text containing (2.1)–
(2.5) above. By requiring the first variation, �F ,
of F to be zero for arbitrary variations, �U, of U
within Q and on @Q one my derive a the di↵erential

equation for U in Q (a.k.a. the Euler-Lagrange
equation) for the variational problem and a natural
(a.k.a. flux-source) boundary condition for u on @Q.

To be specific, if one takes the first variation of
(3.27) and applies some identites as described in the
footnote prior to equation (2.2) one may arrange the
result in the form

�F �
ZZZ

Q


2
h3

div (hU)I •rq (h �U)

+
1
h

⇥
rq U� (rq U)T

⇤
•rq (�U)

�
dVq = 0 . (3.28)

Three identities are useful here. The first asserts
that r('v) = 'rv + v⌦r' for a generic scalar '
and vector v [cf. Gurtin (Ref. 3, equation (4.2)1,
p30] and the second and third assert that I •(a ⌦
b) = tr (a ⌦ b) = a •b [cf. Gurtin (Ref. 3, pp 5–
6)]. With the aid of these identities one may deduce
that

I •rq (h �U) = hI •rq (�U) + �U •rq h . (3.29)

If one substitutes (3.29) into (3.28) and introduces
the abbreviations

� :=
2
h2

div (hU)I +
1
h

⇥
rq U� (rq U)T

⇤
(3.30)

f :=
2
h3

div (hU)rq h (3.31)

that equation becomes

�F �
ZZZ

Q

⇥
� •rq (�U) + f • �U

⇤
dVq = 0 (3.32)

If one sets �F to zero (as is appropriate when F at-
tains a minimum) and interprets the first variation,
�U, of U as what the COMSOL documentation de-
notes by v and calls a test function then equation
(3.32) becomes what that documentation calls the
weak form.

By application of the identities described in the
footnote preceding (2.4) above one may write (3.32)
in the equivalent form

�F +
ZZ
@Q

�U •[��(n̂q)]dAq

+
ZZZ

Q

�U •(divq �� f) dVq = 0 . (3.33)
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Here dAq is the area of a typical small part of @Q
and n̂q is the outward unit normal vector on that
boundary surface. If F is a minimum then �F = 0
subject to arbitrary variations �U on @Q and in Q.
Equation (3.33) then implies that

divq � = f , ��(n̂q) = 0 , (3.34)1,2

which constitute the Euler-Lagrange equation
and the natural boundary condition, respectively.
The system consisting of (3.30), (3.31) and (3.34)1 is
not quite suitable for input to the COMSOL general
form PDE physics interface owing to the presence
of the derivative of a product, namely divq (hU). If
one substitutes h = a2/q2 [cf. (3.11) above] and
evaluates the indicated derivatives one finds that
(3.31) and (3.32) are equvialent to

� =
✓

2q2

a2
divq U� 4

a2
q •U

◆
I+

q2

a2

⇥
rq U�(rq U)T

⇤
(3.35)

and

f = � 4
a2

q
q

✓
q divq U� 2

q
q •U

◆
. (3.36)

The system consisting of (3.34)1,2, (3.35), and (3.36)
is now suitable for input to the COMSOL general
form PDE physics interface.

4. Conditions on normal and slip ve-
locities; Results

As noted in the discussion of the flow in Ri [see
the paragraph containing (2.6) above] the Euler-
Lagrange equation and natural boundary condi-
tion are not su�cient, by themselves, to ensure
uniqueness of u, or, in the present context, U. One
can determine U uniquely by augmenting the nat-
ural boundary condition (3.34)2, with a condition
analogous to (2.6), namely a specification of the
value of U • n̂q on @Q. If the observer for whom
u is the fluid velocity in Re is at rest relative to
the boundary sphere, @Re, then the impermeable-
sphere boundary condition takes the form u • n̂ = 0.
Nontrival solutions are possible if the fluid at a re-
mote distance from the sphere is in uniform mo-
tion, with, say, a downward fluid velocity w1ı̂3
with w1 < 0. in that case U = QT (hu) =
QT [(a2/q2)w1ı̂3], whose rightmost member goes to

infinity as q ! 0. Such a behavior for the unknown
U is unsatisfactory for computation.

A alternative approach is to frame the imper-
meable-sphere boundary condition on @Re under
the assumption that the observer for whom u is the
velocity in Re is at rest relative to the remote undis-
turbed fluid. In such a reference frame the bounding
sphere, @Re, translates upward with velocity�w1ı̂3
and the impermeable sphere boundary condition be-
comes u • n̂ = (�w1ı̂3) • n̂ on @Re.

To relate u • n̂ at a typical point on @Re to
U • n̂q at its image on @Q let  be a scalar-valued
function of position with the feature that both @Re

and @Q are surfaces of constant  , say  = 0. For
definiteness let  be negative valued in both Re and
Q. Then the outward unit normal vectors on @Re

and @Q satisfy

n̂ = (r /kr k) =0 , n̂q = (rq  /krq  k) =0 ,

(4.1)1,2

respectively. If one re-expresses r in the right
member of (4.1)1 by means of (3.25), cancels the
factors 1/h in the numerator and denominator, and
notes that kQ(a)k = kak for every vector a and
orthogonal tensor, Q, equation (4.1)1 becomes

n̂ =
⇥
Q(rq  )/krq  k

⇤
 =0

. (4.2)

If one substitutes (4.1)2 into the right member of
(4.2) that equation becomes

n̂ = Q(n̂q) . (4.3)

But QT (hu) = U, so u = (1/h)Q(U). If one evalu-
ates this last equation on the boundary sphere q = a
and notes that h = 1 there one gets

u = Q(U) (4.4)

Now the inner product of the left members of (4.3)
and (4.4) must equal the inner product of their right
members, so

u • n̂ = Q(U) •Q(n̂q) = U • n̂q , (4.5)

in which the last equality follows from the orthogo-
nality of Q. In view of (4.5) the impermeable-sphere
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boundary condition u • n̂ = (�w1ı̂3) • n̂ on @Re is
equivalent to

U • n̂q = (�w1ı̂3) • n̂ . (4.6)

The system consisting of the di↵erential equa-
tion (3.34)1 subject to the natural boundary condi-
tion (3.34)2 and the impermeable-sphere condition
(4.6) is now su�cient to ensure a unique solution for
U. Having U in Q, one could compute u in Re from
u = (1/h)Q(U), which would represent the velocity
relative to the remote undisturbed fluid. If, alterna-
tivley one wants u to represent the velocity as seen
by an observer who moves with the sphere then one
may take u = (1/h)Q(U) + w1ı̂3.

The vorticity constant, A, for the flow in Ri

and the free-stream velocity, w1ı̂3 cannot be spec-
ified independently without causing a discontinuity
in the tagential velocity, or slip, across the boundary
sphere. To avoid this slip one specifies only one of
the two parameters A and w1 and computes the
other. The present COMSOL model implements
no-slip by requiring that the average around the
equator of the ı̂3-component computed from the u-
solutions in Ri and Re agree.

The present COMSOL model employs three
components: the first contains a General Form PDF
interface to solve for u in Ri; the second contains a
General Form PDF interface to solve for U in Q; and
the third calculates u in a subrgion of Re—namely
the region a < r < 2a—from U in the correspond-
ing subregion of Q. This third component enables
graphical illustration of u in the immediate neigh-
borhood of the spherical vortex. To accomplish
this calculation from the identity u = (1/h)Q(U)
one requires an explicit representation of Q, namely
Q = 2(q/q) ⌦ (q/q) � I. These three components
employ General Extrusion Model Coupling Opera-
tors to exchage information between components.
The first component contains a node which enforces
no-slip by means of a Global ODE and DAE node.
There are two Study Steps: the first carries out
the computations in components 2 and 3; and the
second carries them out in component 1. Fig. 5.1
nearby illustrates the results.

5. Conclusion

COMSOL’s General Form PDE interface enables
computation of the three-dimensional velocity field

Figure 4.1 Computed velocity field in Hill’s spheri-
cal vortex in a cut plane containing the axis of symme-
try: shading represents fluid speed; solid lines represent
streamlines; and arrows represent velocity vectors.

of a fluid flow with nonzero vorticity in a bounded
subdomain of a larger domain that lacks any exte-
rior boundary.
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Mathématique Pures et Appliquées, 10, 1845. In
Reprint of Papers on Electrostatics and Magnetism
by Sir William Thomson, second edition, Cam-
bridge, pages 144–146, 1884.
2. Hill, M.J.M. On a Spherical Vortex. Philo-
sophical Transactions of the Royal Society of Lon-
don (A), 185, pp 213–245, 1894.
3. Gurtin, Morton B. An Introduction to Con-
tinuum Mechanics. Academic Press, 1981.
4. Kellogg, O.D. Foundations of Potential The-
ory, Springer, 1929.
5. Phillips, H.B. Vector Analysis, Wiley, 1933.
6. Hildebrand, F.B. Advanced Calculus for Ap-
plications, Second edition, Prentice-Hall, 1976.

Excerpt from the Proceedings of the 2016 COMSOL Conference in Boston




