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Abstract: The objective of this study is to acquire
a full characterization of a hyperelastic material. The
process is realized by performing a Dynamic Mechanical
Analysis (DMA) while simultaneously extending it by
advanced image processing algorithms in order to measure
the changing distance in the contracting direction. Using
COMSOL’s weak form PDE physics interface, three
mathematical models are developed, where the strain-
energy density function depends on different hyperelastic
constitutive equations. The chosen constitutive equations
are Mooney-Rivlin, Yeoh and Arruda-Boyce. The results
of the numerical study demonstrate that the all three
models exhibit the correct trend of the non-linear behavior
of the material, while the Arruda-Boyce model shows the
best fitting performance.
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I. INTRODUCTION

Viscoelastic materials have been used in many different
applications, for example isolating vibration, dampening
noise and absorbing shock. Synthetic polymers, wood,
and human tissue, as well as metals at high temperature,
display significant viscoelastic effects [1]. Viscoelastic ma-
terials exhibit several non-trivial effects such as highly
non-linear dynamic behavior. When an elastic material
is deformed due to an applied external force, internal
resistance counters the deformation and restores it to its
original state if the external force is no longer applied
[2], [3]. In general, it is inherently complex to model
behaviors of such materials using a finite element software
due to its non-linear properties. This paper describes
the full characterization of a viscoelastic material. The
acquired experimental results, from DMA and advanced
image processing, are subsequently implemented in the
finite element software for developing an optimized model
of the material.

The image processing algorithms are developed using
MATLAB wversion R2015a. The optimization and devel-
opment of the final model of the material is performed in
the finite element analysis, solver and simulation software
- COMSOL Multiphysics version 5.1.

II. THEORY

For the given material, linear elastic models (e.g. Neo-
Hookean model) can not accurately describe the observed
behavior, so in order to overcome this problem hyperelastic
material models are introduced. Hyperelasticity provides
a means of modeling the stress-strain behavior of such
materials [4].

In this section a derivation of the governing equation is
given. This theoretical part is required in order to perform
a finite element analysis.

Fig. 1. General coordinate system with deformed and
undeformed bodies.

Figure 1 grap_l)ﬁcil)ly reprgsents the general coordinate
system where i1, io and i3 are the three unit normal
vectors. The projection of the undeformed body with
volume B is represented by positions x1, x2 and x3 on
the general coordinate system, while the projection of the
deformed body with volume B; is represented by positions
z1, 22 and z3.

The position vector from the origin (0,0,0) to a certain
point in the undeformed body is denoted by 7

3
- -
7= wii =i, (1)
i=1
where the latter term denotes Einsteins summation con-

vention, used throughout the entire paper. The corre-
sponding position after deformation of the body is given
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by ﬁ
B =i (2)

In addition the displacement U is given as
T=F-7. 3)

Hamilton’s Principle:
Hamilton’s principle is used to derive the governing equa-
tion for the deformation of the viscoelastic material. The
action integral is defined as

ta
I= / Ldt, (4)
t1

where L is the Lagrangian which is defined as the differ-
ence between the kinetic and potential energy:

L=T-W, (5)

where T is the kinetic energy and W is the potential
energy. In the undeformed configuration (reference con-
figuration) we have:

7~ [ Gonian. (6)

where B is the undeformed volume, T is the velocity and
pr the reference mass density.
The potential energy W is given by:

W:/Mwa (7)
B

where e is the deformation energy density, which depends
on the deformation gradient F':

e =e(F), (8)
with 5 5
Fiy = o = g + 00 (9)

Finding the first variation of the action integral leads to
the governing equation

8ui 85u,

ta
g
. B(pR at ot

Equation (7) is the accurate representation of the potential
energy, but due to its non-linearity, it is too complex to
find the expression for the strain energy density function.
Therefore the potential energy W is expressed as one
of the hyperelastic constitutive models. In this case the
potential energy is expressed by Mooney-Rivlin [5] [6],
Yeoh [7] [8] and Arruda-Boyce [9] [10] hyperelastic models.

- 5W) dBdt.  (10)

1) Mooney-Rivlin Model:
W2001(f2—3)+010(f1 —3)—|—D1(J—1)2, (11)

where Cp1, C1o and D; are material parameters.

2) Yeoh Model:
W = ZCiO(I_l —3)' + Z Crai(J = 1%, (12)
i=1 k=1

where C;o and Cj; are material parameters, and we
choose n = 2 in order to reduce the time to perform
parameter estimation. Moreover, by increasing n will not
give significantly more accurate results.

3) Arruda-Boyce Model:

J? =1 - i—1(7i _ qi
W:D1< 5 —1nJ>+Clzazﬂ NI -39, (13)

i=1

where Dy, C; and [ are the optimized parameters and

8= %, oy = %, Qg 1= 21—0, Qg = %, Qy = % and
ap = 519
673750
Note that
I, = J723], (14)
I = J431,, (15)
J = det(F), (16)

where I; and I are the first and the second invariant
of the unimodular component of the left Cauchy-Green
deformation tensor.

In order to compare with the DMA experiments results,
it is needed to calculate the generated force on the lower
surface, shown in Figure 2.

[

Fig. 2. The time-dependent lower boundary condition.

The force is given by

F =
Ay

Tijndet = / SiijdS, (17)
A

where A, is the surface area in the deformed configuration

and A is the surface area in the undeformed configuration.

It is of less complexity to calculate the force in the
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undeformed configuration. According to the first Piola
Kirchhoff stress

Oe
Sij = PR 18
since
W = pre (19)
equation (18) can be re-written into
ow
i = . 2

Combining equation (17) and (20) will give the force F.
Then it is possible to calculate the error between the
measured and simulated forces.

I1I. EXPERIMENTAL RESULTS

stretched sample

camera S

4, 11 - -1

Fig. 3. Schematic setup of the dynamic mechanical
analysis with image processing extension. The mounted
Go Pro Hero 4 Black aims the sample on the right side.

After performing the test, graphically shown in Figure
3, the acquired results are illustrated in Figure 4. The
resultant force-displacement graph demonstrates the ma-
terial non-linearity. Therefore it is essential to implement
a hyperelastic model of higher order. Figure 5 illustrates
the obtained results from image processing. The Fig. 5
(a) shows the initial position of the detected dots where
the material is undeformed. On the other side Figure 5
(b) shows the final position, when the sample is under
deformation. Figure 6 represents the distance between
the left and right dots and how it changes over the time of
the video. As it can be seen, the distance between the dots
decreases as the material is being stretched. This behavior
is expected due to the fact that the middle part contracts
when the material is being stretched.

Static Force (N)
o
I

0 T T T T T
-2000 0 2000 4000 6000 8000 10000
Displacement {lm)

Fig. 4. The result of force vs. displacement, where one
can see from this hysteresis that the displacement and
the force are non-linear.

) On this figure the The final frame
detectlon aims the left where the sample is

and the right dot, re-
spectively. The sample
is unstretched.

stretched. Again the
code detects the left
and the right dot, re-

spectively.

Fig. 5. The results of the image processing. The two
figures on the left represents the unstretched sample and
the two figure on the right represents the stretched
sample.
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Fig. 6. Distance between the left and right dots vs.
Time. As the material is being stretched the distance
between the dots reduces.
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IV. COMSOL IMPLEMENTATION

Model Building

This model is built in a three dimensional space using
time-dependent weak form PDE. The geometry of the
model, graphically represented in Figure 7, is based on
sample dimensions, including the painted dots which are
placed by using domain point probes.

Fig. 7. Geometry model including two probes. The
probes placements corresponds to the position of the
painted dots of the real sample.

The previous derived governing equation (10) is imple-
mented in weak form PDE weak expression:
rho x (d(ul,t) = d(test(ul),t) + d(u2,t) *
d(test(u2),t) + d(u3,t) = d(test(ul),t)) — test(W)

The strain energy density function W is expressed depend-
ing on the chosen hyperelastic model.

W C1*(11_h-3)+D1*(J-1)"2
C11 F11*2+F21*2+F31"2

Cc12 F11*F12+F21*F22+F31*F32
C13 F11*F13+F21*F23+F31*F33
C21 C12

C22 F12*2+F22"2+F32"2

Cc23 F12*F13+F22*F23+F32*F33
C31 C13

C32 C23

C33 F13*2+F23"2+F33"2

Fig. 8. Implementation of Mooney-Rivlin hyper elastic
model in variables.

The upper boundary is allowed to move in the z-
direction. The prescribed value is set to be the linear
interpolation of the change of length of the real sample
(measured by the DMA).

In order to perform optimization, the error between the
measured data and modeled data needs to be calculated:

T
Ey = / (F - Fmeasured)2dt7 (21)
0
T
E2 = / (D — Dimage processing)th, (22)
0
E=a1E + azEs, (23)

where E, 5 and E are the error between the simulated
and measured force, error between the simulated
and image processing distances and the total error,
respectively. In addition, oy and «y are weighting values.
The challenge of solving time dependent integrals in
COMSOL is circumvented by manually differentiating
equation (23) and solving it by using the physics Global
ODFEs and DAFs:

dE dFEq dFEs

at - a T “ar

The Nelder-Mead method is used to minimize the in-
tegral of the total error, which is done by optimizing the
control variables, which depend on the hyperelastic model.

= 0. (24)

(a) The resultant deformation

shown in 3D.

(b) The stretched material sample.

Fig. 9. The stretched material sample results. It shows a
comparison between the simulated and the DMA results.
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V. NUMERICAL RESULTS

In this section the acquired results are demonstrated
and compared with each other. Figure 9 (a) graphically
represents the resultant deformation of the sample at the
end of the test. The shape of this simulated deformation
fits with the sample, observed during the DMA (shown
in Figure 9 (b)). Figure 10 (a) illustrates the comparison
of the measured and simulated forces using the Mooney-
Rivlin hyperelastic model. In the first 9 seconds it can be
seen that the error does not exceed 3% but globally the
model follows the measured data. In addition a comparison
between the distances of the model and image processing
is represented in Figure 10 (b). The second model is the
Yeoh hyperelastic model. The results are represented in
Figure 11 (a) and 11 (b). Comparing the graphs of force
vs. time of the Yeoh model and the Mooney-Rivlin model
it can be seen that both models behave in a similar way.
However by comparing the distance between their dots it
can be noticed that even though the resultant shapes are
similar, the biggest error in the Yeoh model is smaller.
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(a) Force comparison using Mooney-Rivlin hyperelasic model.
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(b) Comparison of distances between the created two dots.

Fig. 10. The Mooney-Rivlin hyperelastic model results.
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(a) Comparison of measured and simulated forces by applying
Yeoh method.

3.4
335 ~— Yeoh g
~— Image Processin:
33p g )
325k
32p
E A
_E, 215
y 31t
c
o
# 305
[a]
a3k
295
29¢
285
284

Timne [s]

(b) Comparison of measured and simulated distances between two
dots by applying Yeoh method.

Fig. 11. The Yeoh hyperelastic model results.

The last model is chosen to be the Arruda-Boyce model.
The results, graphically represented in Fig. 12 (a) and 12
(b), shows the best fitting of the simulated model to the
real model. As it can be seen on the distance between two
dots vs. time graph, the biggest error is three times smaller
if compared to the Yeoh model and four times smaller to
the Mooney-Rivlin model.

VI. CONCLUSION

From the results of the DMA test it can be concluded
that the material exhibits non-linear behavior between the
force and the displacement. It can also be seen, that the
material has hysteresis properties.

Due to the unstable frame rate of the used camera and
its limited resolution, the error in the image processing
algorithms should be improved in future development.

From the results of the COMSOL simulations, all of the
hyperelastic models exhibit the correct trend of the non-
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linear behavior of the material. However, the Arruda- [8] R. S. Rivlin, Some applications of elasticity theory to rubber

Boyce hyperelastic material model proves to be the most g”g?'”emqggggouede‘i Papers of R. S. Rivlin vol. 1 and 2,
pringer, .
accurate of the chosen. [9] E. M. Arruda, M. C. Boyce, A three-dimensional model for the

large stretch behavior of rubber elastic materials. J. Mech. Phys.
Solids, 41(2), pp. 389412, 1993.
. [ H ! i i ] i i [10] M. Kaliske, H. Rothert, On the finite element implementation of
i — Arruda Boyce rubber-like materials at finite strains. Engineering Computations,
26| —— Measured Force 1 14(2), pPp. 216-232, 1997.
[11] X.Yang, Engineering Optimization: An Introduction with Meta-

1 heuristic Applications (1st Edition. Page 86, Wiley, 2010.
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(a) Force comparison using Arruda-Boyce hyperelastic model.
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(b) Comparison of measured and simulated distances between two
dots by applying Arruda-Boyce hyperelastic model.

Fig. 12. The Arruda-Boyce hyperelastic model results.
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