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CO2 Storage 

Storage of CO2 in the sub-surface is seen as a technology 
that can contribute to the generally accepted goal of a 
decarbonized society (climate treaty Paris 2015).  
Concerning the practical application of CO2 storage many 
questions are still unanswered. In the most favoured 
scenario CO2 in supercritical state is pressed into a deep 
geological formation. Within the permeable layer CO2 will 
come to overlie brine and will start to dissolve into the 
deeper part by diffusion and convection.  
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Geological Storage Options 

© Intergovernmental Panel on Climate Change (2005) 
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Numerical Modelling 

For the development of the storage technology real field 
experiments are hardly feasible. Therefore current studies 
utilize the capabilities of numerical modelling, to explore the 
basic behaviour of the underground system. Highly 
dynamic convective motions are induced by CO2 entering 
at the top interface of a geological formation. The details of 
the flow patterns depend heavily on disturbances of 
physical parameters and also on numerical features, like 
mesh refinement.  
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Differential Equations (2D) 
Flow (1)  for streamfunction Ψ  
Transport (2) for salinity c 
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Rayleigh number Ra 
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Porous	Media	Convection	

Conduction 
(Ra=30) 

Steady Convection  
(Ra=50) 

Flow Patterns 

Oscillatory Convection 
(Ra=400) 

Ra	=	Porous	medium	Rayleigh	number	[1]	



Model Region (2D)  
& Boundary Conditions 

gravity 
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Parameters 

Reference case 
parameters (partially taken 
from: Pau et al. 2010) 
 

Ra = 5000  
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Meshes 

Example permeability random field 
distribution produced for the coarse mesh  
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Onset of Convection 
Near upper boundary,  
red: high CO2 content, blue: low CO2 content 

Created with oscillatory initial disturbance at the boundary 
left: 10 periods, right: 18 periods   

coarse mesh 

medium mesh 

fine mesh 
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Convection Patterns 

coarse mesh medium mesh fine mesh 
Early convection 

Late convection 
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Mass Transfer 

(A) diffusion, (B) early convection, (C) late convection  
Sherwood number Sh Sh = ∂c

∂z0
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∫ dx
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Mass Transfer Results (1)  

	
from 30 different random field realisations for permeability 
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Mass Transfer Results (2)  

	

from 30 different random field realisations, fine mesh results shifted  
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Conclusions (1) 
! The system is highly dynamic, i.e. the output of the 

simulations depends highly on slight disturbances of 

"  Initial conditions 

"  Boundary conditions 

"  Heterogeneities 

! Thus the development of a single simulation cannot be 

used for predictive purposes 

! A series of scenarios, with different physical and numerical 

parameters has to be simulated for intercomparison    
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Conclusions (2) 
! Time of onset of convective motions depends on 

mesh refinement 

! Early convection phase does not show a single mass 

transfer peak 

! The duration of the early convection phase is 

independent of mesh and random field 

! In late convection with decreasing mass transfer, also 

the fluctuations of mass transfer decrease 
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Further work (possible) 
The modelling approach using COMSOL Multiphysics can be 

extended to consider further effects of 
 
! increased disturbances or heterogeneities 
! complex geometries 
! consideration of anisotropies of 

"  permeabilities 
"  diffusivities 

! consideration of dispersion 
! 3D convective patterns 
! temperature dependencies 
! thermal coupling 
! geomechanical coupling  
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