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Abstract: In this work the coupled 
electrochemical-thermal model for a Lithium-ion 
battery (LIB) based on porous electrode theory 
has been extended with contributions coming 
from exothermic side reactions based on an 
Arrhenius law to model abuse mechanisms, 
which could lead to a thermal runaway. These 
extensions have been modeled with a constant 
fuel model and for specified current profiles and 
exterior temperature profiles to simulate cell 
cycling under adiabatic conditions or an oven 
test repectively. The model has been imple-
mented into COMSOL Multiphysics® (version 
5.2) using the Battery and Fuel Cell Module 
coupled to the Heat Transfer in Solids Module. 
For a cylindrical 18650 cell with a LiCoO2 
cathode the spatial overall mean cell temperature 
𝑇𝑇 during the time evolution of a thermal runaway 
has been computed. Moreover the different 
stages of the thermal runaway have been 
classified in the phase space T, which is spanned 
by a 𝑇𝑇, 𝑑𝑑𝑇𝑇/𝑑𝑑𝑑𝑑,  𝑑𝑑2𝑇𝑇/𝑑𝑑𝑡𝑡2-plot.  
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1. Introduction

Lithium-ion batteries (LIB) have found a
wide range of applications in the last three 
decades, like notebooks, cell phones, powertools 
or hybrid or fully electric vehicles. The thermal 
runaway of a single cell in a larger battery pack 
is the worst case scenario which must be avoided 
under all circumstances. Several exothermic 
reactions can occur as the inner cell temperature 
is increasing. If the heat generation is larger than 
the dissipated heat to the surroundings, this leads 
to heat accumulation in the cell and acceleration 
of the chemical reactions, which can end up in a 
thermal runaway if the point of no return has 
been overcome.  

The standard multi-scale multidomain 
(MSMD) models developed in [1-4] cannot 

simulate accurately the phenomenon of thermal 
runaway. First attempts to overcome this 
disadvantage are reported in [5], where the heat 
equation is coupled with ordinary differential 
equations (ODEs), describing the temporal 
evolution of the concentration of the exothermic 
reactions based on an Arrhenius-type law. 
Spotnitz et al. [6] give a first partial differential 
equation (PDE) based modeling of the thermal 
runaway including reaction kinetics. In [7, 8] the 
electrochemical-thermal model is extended with 
reaction kinetics based on an ODE formulation.  

The same approach as in [8] has been used in 
this work and has been implemented into 
COMSOL Multiphysics®. This work is 
organized as follows. In section 2 the thermal 
modelling is briefly described. In Section 2.1, the 
thermal model is formulated and all heat sources 
are identified. In the following subsections the 
corresponding mathematical models, that are 
related to these heat sources are given. In Section 
2.2, the electrochemical heat source is modeled 
using the MSMD model of LIB [3], which is 
implemented in the Battery and Fuel Cell 
Module in COMSOL Multiphysics®. Section 2.3 
is devoted to the exothermic kinetic reactions 
leading to a thermal runaway, which are given in 
terms of mathematical combustion theory [9]. In 
Section 3 the implementation and the simulation 
using COMSOL Multiphysics® are described. 
Finally in section 4 simulation results for an 
oven test and simple electrical current loads are 
shown. Moreover the different stages of the 
thermal runaway have been classified.  

2. Thermal modeling of Lithium-ion
batteries

To model the thermal behavior of LIB the main 
focus is the consideration of a single cell. It is 
assumed that the interior of the cell is separated 
from the environmental air due to the battery 
can, so the cell can be considered as a closed 
system. Under general working conditions, LIB 
are exposed to an electrical and/or a thermal 
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load. As consequence, heat is generated inside 
the cell due to several electrochemical and 
chemical processes. If the heat generation inside 
the cell is smaller than the ability of the cell to 
dissipate heat to the environment, the cell is in a 
thermally stable state. If more heat is generated 
in the cell than can be dissipated to the 
environment the cell is in a thermally unstable 
state. The worst case scenario in this second case 
is the occurrence of a thermal runaway. The 
critical aspect in the case of a thermal runaway is 
its relation to the energy conservation. With the 
help of the energy conservation, one is able to 
describe thermal characteristics like heat 
generation and heat dissipation. 
 
2.1 The energy conservation 
 

If there is no heat convection inside the LIB, 
the general equation for the energy conservation 
can be derived from Fourier’s law as initial 
boundary problem [9] with the parabolic 
differential equation: 

          𝜌𝜌𝑐𝑐𝑝𝑝
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

(𝐱𝐱, 𝑡𝑡)𝜅𝜅Δ𝑇𝑇(𝐱𝐱, 𝑡𝑡) + 𝑄𝑄𝑔𝑔𝑔𝑔𝑔𝑔(𝐱𝐱, 𝑡𝑡)      (1) 

for the temperature T : (x, t) ∈ Ω × ℝ+  ℝ of 
the cell in K. The corresponding initial and 
boundary conditions are: 

                      T(x,0)=T (x), ∀ x ∈Ω,                 (2) 

𝐧𝐧 · (𝜅𝜅𝜅𝜅𝜅𝜅) = −ℎ(𝑇𝑇 − 𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒) − 𝜀𝜀𝜀𝜀(𝑇𝑇4 − 𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒4 ), 

    ∀𝐱𝐱 ∈ 𝜕𝜕Ω  (3) 

In this framework x ∈ Ω ⊂ ℝ3 is an spatial 
interior or surface point of the cell and t ∈ ℝ+ := 
{t ∈ ℝ, t ≥ 0} is the time. Tenv denotes the 
environmental temperature, T0 is the initial 
temperature profile inside the cell at t = 0 s. It is 
assumed, that the initial temperature at the 
boundary of the cell coincides with the 
environmental temperature at t = 0 s. Ω denotes 
the interior of the battery cell, ∂Ω represents the 
boundary of the cell and the closure Ω = Ω ∪ ∂Ω 
is the complete cell. Furthermore n ∈ ℝ3 is the 
outward pointing normal vector, h is the heat 
transfer coefficient, ε the emissivity, σ the 
Stefan-Boltzmann constant, ρ the density of the 
cell, cp the heat capacity and κ the thermal 
conductivity. The solution of equation (1) 
describes the temperature distribution inside the 
cell for times t > 0 and all spatial points x ∈ Ω. 

Equation (2) represents the given initial 
distribution of the temperature in the LIB at 
t = 0s. Finally equation (3) is the heat dissipation 
to the environment. The first term on the right 
hand side of equation (3) is the heat dissipation 
due to convection, while the second term 
describes the heat dissipation due to radiation. In 
the inhomogeneity Qgen different heat sources are 
included. These contributions are coming from 
the heat generated by reversible and irreversible 
thermodynamic effects, which are represented by 
the electrochemical heat source Qel−chem and from 
exothermic kinetic side reactions Qexotherm: 

        Qgen(x,t) = Qel−chem(x,t) + Qexotherm(x,t).     (4) 

Thus, for Qexotherm and Qel−chem in equation (4) 
additional mathematical models must be 
formulated. 
 
2.1 Identifying the electrochemical heat 
sources 
 
If a cell is exposed to an electric load I, heat will 
be generated inside the cell due to the reversible 
and irreversible processes in the cathode, anode 
and the electrolyte of the LIB. The total 
electrochemical heat source is then: 

                    Qel−chem = Qrev + Qirrev      (5) 

                           𝑄𝑄𝑟𝑟𝑟𝑟𝑟𝑟 = 𝐼𝐼 · 𝑇𝑇 ·
𝑑𝑑𝑈𝑈𝑒𝑒𝑒𝑒
𝑑𝑑𝑑𝑑

                  (6) 

                            Qirrev =    I (U − Ueq )                      (7) 

The critical variables in the electrochemical heat 
source are the equilibrium voltage Ueq and the 
derivation of the equilibrium voltage with 
respect to the temperature ∂Ueq/∂T. Due to their 
porous structure the cathode and anode consist of 
the solid phase and a liquid phase filled with the 
electrolyte and a model based on the porous 
electrode model [10] has to be applied, which 
represents a multi-scale multi-domain approach 
(MSMD). Such an approach takes the physical 
and geometrical structure of the LIB on the 
different length scales and different geometrical 
domains into account. Charge transfer kinetics 
have to be solved on the electrode-electrolyte 
interface. The transport of the Li-ions is modeled 
with a diffusion mechanism and the migration 
and diffusion of the Li-ions through the liquid 
electrolyte can be evaluated. The charge balances 
in the solid cathode and anode as well as the 
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liquid electrolyte are also resolved in the 
corresponding matrices. To determine the 
electrochemical heat sources one has to apply 
the spatial averaging theorem to the 
corresponding current densities and heat fluxes 
on each domain level. A detailed survey can be 
found in [11] and the references therein. 
 
2.3 Modeling the thermal runaway and 
exothermic heat sources 
 

Exothermic reaction kinetics are closely 
related to thermal abuse mechanisms. Several 
exothermic chemical reactions can occur inside a 
cell as the temperature rises. This may generate 
heat that accumulates inside the cell and 
accelerates the chemical reaction between the 
cell components, if the heat generation rate 
exceeds the dissipation rate to the surroundings. 
External conditions for a temperature rise can be 
external heating, over-charging or over-dis-
charging, high current charging, nail penetration, 
external short or others. In these cases a thermal 
runaway can occur in consequence with leakage, 
smoke, gas venting, flames etc., which leads to 
the destruction of the cells. 

In detail the heat source in the corresponding 
heat equation is extended with various 
exothermic reactions, for example at the surface-
electrolyte interface at temperatures in the 
interval T ∈ [T1, T2], reactions between anode 
resp. cathode and the electrolyte between 
temperatures in the interval T ∈ [T3, T4] and the 
destruction of the electrolyte above the 
temperature T > T5, where T1 < T2 < T3 < T4 < T5. 

Several authors have given models to 
describe abuse behavior and thermal runaway. 
To describe the thermal runaway of a LIB one 
has to identify the main exothermic chemical 
reactions. Following [8, 12, 13] the general 
mechanism, that leads to a thermal runaway can 
be described with respect to rising temperature in 
four main stages as follows: 

(1) SEI decomposition reaction: At T > T1 

the solid-electrolyte interface (SEI) will 
decompose in an exothermic reaction 
⇒ heat source Qsei. 

(2) Negative solvent reaction:  At T > T2  

an exothermic reaction between the 
intercalated Li-ions and the electrolyte 
will start ⇒ heat source Qne. 

(3) Positive solvent reaction: For T > T3 an 
exothermic reaction between the positive 
material and the electrolyte takes place 
under the evolution of oxygen inside the 
cell ⇒ heat source Qpe. 

(4) Electrolyte decomposition: In a final 
exothermic reaction the electrolyte will 
decompose at T > T4  

⇒ heat source Qele. 

For the exothermic heat source one assumes 
that the n independent exothermic reactions which 
occur in the LIB are governed by simple 
Arrhenius laws. Then the exothermic heat source 
is given as: 

        𝑄𝑄𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑒𝑒𝑒𝑒𝑒𝑒(𝐱𝐱, 𝑡𝑡) = �𝑄𝑄𝑖𝑖(𝐱𝐱, 𝑡𝑡)                   (8)
𝑛𝑛

𝑖𝑖=1

 

with 
 

       𝑄𝑄𝑖𝑖(𝐱𝐱, 𝑡𝑡) = 𝑐𝑐𝑖𝑖(𝐱𝐱, 𝑡𝑡)𝑞𝑞𝑖𝑖𝐴𝐴𝑖𝑖exp �−
𝐸𝐸𝑎𝑎,𝑖𝑖

𝑅𝑅𝑅𝑅(𝐱𝐱, 𝑡𝑡)
�   (9) 

 

where ci(x, t)  is the dimensionless concentration, 
qi is the reaction enthalpy in J g−1, Ai is the 
frequency factor in 1/s, Ea,i is the activation 
energy in J mol

−1
 and R is the universal gas 

constant. For simulations in the next section, it 
is assumed that the concentration ci(x, t) is 
constant. In this so-called constant fuel model all 
time-spatial dynamics of the concentrations are 
neglected. The exothermic heat sources defined 
in equation (9) are thus only dependent on the 
temperature T, i.e. for i ∈ {sei, pe, ne, ele} 
 

       𝑄𝑄𝑖𝑖(𝐱𝐱, 𝑡𝑡) = 𝑐𝑐𝑖𝑖0𝑞𝑞𝑖𝑖𝐴𝐴𝑖𝑖exp �−
𝐸𝐸𝑎𝑎,𝑖𝑖

𝑅𝑅𝑅𝑅(𝐱𝐱, 𝑡𝑡)
�         (10) 

 
 
3. Use of COMSOL Multiphysics®  
 
The mathematical model described in the last 
section represents a simple multi-scale multi-
domain approach, which has been implemented 
in the Battery and Fuel Cell Module of 
COMSOL Multiphysics. For the simulations 
presented next, a cylindrical 18650 cell with 
LiCoO2 chemistry was chosen and an axial- 
symmetric pseudo-2D model was implemented. 
From the material database in COMSOL 
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Multiphysics a LixC6 anode, a LixCoO2 cathode 
and as electrolyte 1:1 EC : DEC with a LiPF6 salt 
is used. The internal spirally wound geometry is 
not resolved. From the reaction-diffusion system 
of the exothermic reactions inside the LIB only 
the additional heat sources are used to extend the 
heat transport equation with additional heat 
sources (constant fuel model). The main physical 
parameters of the simulations can be found in 
[11].  

For the simulations two physical relevant 
cases under adiabatic conditions, i.e. the 
convective heat transfer coefficient h vanishes, 
have been considered: 
 

(a) Oven test: In this case the LIB will be 
heated from exterior with a certain 
heating rate (Figure 1(a)). 

(b) Electric load: The LIB will be heated 
from the interior due to the active battery 
material with respect to the applied 
electric current (Figure 1 (b)). 

 

 
 

 

Figure 1. (a): Oven test with a heating rate of (𝑑𝑑𝑇𝑇/𝑑𝑑𝑑𝑑 
= 5K/min). (b): Cycling with a periodic 
electrical current load (Tcycling = 500 s, Îapp 
= 80 A/m2). 

The simulations were performed in COMSOL 
Multiphysics Version 5.2. For the time 
integration a backward differentiation formula 
(BDF) integration scheme is chosen with a 
minimum order of 1 and a maximum order of 5 
using a variable step size with a maximum time 
step of 1s and an absolute tolerance of 0.001. 
Since the spatial discretisation is based on the 
Finite Element Method (FEM) an adaptive 
spatial discretisation in the three models of the 
particle domain, the electrode and the cell 
domain is used. The model of the particle 
domain is solved automatically in the Battery 
and Fuel Cell Module. Therefore only a spatial 
discretisation for the electrode domain and the 
cell domain is needed. The electrode domain is 
one-dimensional and the cell domain is modeled 
due to symmetry reasons in the angular direction 
of a cylindrical cell as two-dimensional. In the 
electrode domain, the maximum element size in 
the discretisation is chosen as 1 µm. And in total, 
the discretisation contains 168 elements. For the 
one-dimensional finite element discretisation in 
the electrode domain quadratic basis functions 
were chosen. In the cell domain the spatial 
discretisation is performed in the r − z-plane 
using 2266 triangular elements with the element 
size in the interval [3.9 · 10−4, 8.45 · 10−2]m and 
quadratic basis functions. 

To simulate an oven test, an additional 
boundary condition is implemented in the model, 
which describes the increasing environmental 
temperature during heating by a surface heat 
source Qsurf, with Qsurf = 1809 W/m2. This value 
is equivalent to a constant heating rate of 
5K/min. 

 
4. Simulation Results and Discussion 
 

To classify the different stages of a thermal 
runaway in the phase-space T the overall spatial 
mean cell temperature 𝑇𝑇,  and their first 𝑑𝑑𝑇𝑇/𝑑𝑑𝑑𝑑 
and second  𝑑𝑑2𝑇𝑇/𝑑𝑑𝑡𝑡2 time derivative are 
considered.  

                               𝑇𝑇(𝑡𝑡) ≔
1
𝑉𝑉
�𝑇𝑇(𝐱𝐱, 𝑡𝑡)𝑑𝑑𝑑𝑑
𝑉𝑉

        (11) 

The time evolution of the overall mean cell 
temperature towards the thermal runaway is 
given in Figure 2. In the Figure 3 the two-
dimensional projections of the phase-space T for 
the oven trial (I) and the electric load (II) are 
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shown. The horizontal and vertical dashed lines 
coincide with critical heating rates 𝑑𝑑𝑇𝑇/𝑑𝑑𝑑𝑑 and 
temperatures 𝑇𝑇 as described in [13]. From 
Figure 3 one can identify three zones during the 
rise of the temperature 𝑇𝑇 towards the thermal 
runaway depending on both cases. In general one 
can discriminate between: 

• Zone 1: Below 𝑇𝑇 ≈  400 K the heating rate 
𝑑𝑑𝑇𝑇/𝑑𝑑𝑑𝑑 is bounded below a threshold 
𝑑𝑑𝑇𝑇/𝑑𝑑𝑑𝑑|thres,1 at a low level at a nearly 
constant rate for the oven trial (Figure 3 
(I)(a)) and slightly increasing for the electric 
current profile (Figure 3 (II)(a)).  In Figure 
3 (b) the corresponding evolution of 
 𝑑𝑑2𝑇𝑇/𝑑𝑑𝑡𝑡2with respect to T is given. 
Furthermore one can see that below 
temperatures of 𝑇𝑇 ≈ 360 K  𝑑𝑑2𝑇𝑇/𝑑𝑑𝑡𝑡2 is 
decreasing and becomes negative (gap in the 
plot (I) (b)). Above 𝑇𝑇≈ 360 K 
 𝑑𝑑2𝑇𝑇/𝑑𝑑𝑡𝑡2 is increasing and positive. For the 
case of electric cycling (Figure 3 (II)(b)) 
below 𝑇𝑇 ≈  400 K one can see that during a 
charging pulse the heating rate is increasing, 
while for a discharging pulse the heating rate 
is decreasing and becomes negative (gap in 
the plot). This can be seen in the left area of 
the Figure 3, (I)/(II)(c) as well. 

• Zone 2: In Figure 3 (I)(a) for the oven-trial the 
heating rate is rising above 𝑇𝑇 ≈  400 K while 
the overall mean cell temperature is rising, 
but stays bounded below a threshold 
 𝑑𝑑𝑇𝑇/𝑑𝑑𝑑𝑑|thres,2. More precise   the increase in 
the heating rate starts already at temperatures 
𝑇𝑇 ≈ 360 K (Figure 3 (I)(b)). For the electric 
current profile a similar behavior is shown in 
the Figure 3 (II) above 𝑇𝑇 ≈ 400 K which is 
perturbed by the jumps of the current profile. 
The corresponding relationship between 
𝑑𝑑𝑇𝑇/𝑑𝑑𝑑𝑑 and  𝑑𝑑2𝑇𝑇/𝑑𝑑𝑡𝑡2 is shown in the middle 
area of the Figure 3, (I)/(II)(c). 

 

 
 

Figure 2. Thermal runaway during an oven test. 

• Zone 3: Finally for temperatures   𝑇𝑇 ≥ 435 K 
the heating rate  𝑑𝑑𝑇𝑇/𝑑𝑑𝑑𝑑 as function of the 
overall mean cell temperature 𝑇𝑇 shows a 
linear increase in the semi-logarithmic plot of 
the Figure 3,(I)/(II)(a). This corresponds to 
an exponential dependence of 𝑑𝑑𝑇𝑇/𝑑𝑑𝑑𝑑 with 
respect to 𝑇𝑇 i.e.  

 

 
𝑑𝑑𝑇𝑇
𝑑𝑑𝑑𝑑

= 𝑎𝑎 · exp�𝑏𝑏 · 𝑇𝑇�,𝑇𝑇 ≥ 𝑇𝑇0            (12) 

where T0 is the lower bound, where this 
dependency is valid, and a, b are some 
constants. A similar behavior can be found 
for  𝑑𝑑2𝑇𝑇/𝑑𝑑𝑡𝑡2in the Figure 3, (I)/(II) (b). In 
general one can show by induction that the 
n-th time derivative of the overall mean cell 
temperature shows an exponential growth 
behavior with respect to 𝑇𝑇 : 
 

     
𝑑𝑑𝑛𝑛𝑇𝑇
𝑑𝑑𝑡𝑡𝑛𝑛

= 𝑎𝑎𝑛𝑛 · exp�𝑏𝑏𝑛𝑛 · 𝑇𝑇�,𝑇𝑇 ≥ 𝑇𝑇0,𝑛𝑛 ≥ 1  (13) 

with an, bn some constants. This is the region 
where the thermal runaway starts, which is 
equivalent with a blow-up in the temperature 
curve and the time derivatives of arbitrary 
order. The double-logarithmic plot in the 
Figure 3, (I)/(II)(c) shows a linear dependency 
between  𝑑𝑑2𝑇𝑇/𝑑𝑑𝑡𝑡2 and 𝑑𝑑𝑇𝑇/𝑑𝑑𝑑𝑑 in the right area 
of the plots. Again by induction one can show 
that the n-th time derivative n ≥ 2 of the 
overall mean cell temperature shows a linear 
behavior with respect to the heating rate 
𝑑𝑑𝑇𝑇/𝑑𝑑𝑑𝑑, i.e. 
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𝑑𝑑2𝑇𝑇
𝑑𝑑𝑡𝑡2

= 𝐴𝐴 ·
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

+ 𝐵𝐵,𝑇𝑇 ≥ 𝑇𝑇0        (14) 

where A, B are some constants. 

 

 

Figure 3. Two-dimensional projections of the phase-
space T  (a) 𝑇𝑇 − 𝑑𝑑𝑇𝑇/𝑑𝑑𝑑𝑑 -trajectory, (b) 
𝑇𝑇− 𝑑𝑑2𝑇𝑇/𝑑𝑑𝑡𝑡2-trajectory, (c) 𝑑𝑑𝑇𝑇/𝑑𝑑𝑑𝑑 − 
𝑑𝑑2𝑇𝑇/𝑑𝑑𝑡𝑡2-trajectory. (I) oven test, (II) 
electric load. 

 
 
5. Conclusion 
 
Since we have some electrochemical and some 
exothermic heat sources in the thermal model, the 
results from the last section have the following 
physical meaning (Figure 4): 

• Zone 1: In this zone the electrochemical 
heat sources represented by the reversible 
and irreversible part are dominant. The 
exothermic heat sources can be neglected. 
This zone corresponds to a thermal stable 
state of the LIB. 

• Zone 2: Due to the rise in the 
temperature the exothermic heat sources 
start to become more active. This zone 
can be considered as a transient zone on 
the way from a thermal stable to a 
thermal unstable state of the cell 

• Zone 3: In this zone the exothermic heat 
sources are dominant and the 
electrochemical heat sources can be 
neglected. This zone corresponds to a 
thermal unstable state of the LIB which 
represents the thermal runaway. 

 

 
 
Figure 4. Thermal Runaway classification: (a) In the 
temperature vs. time plot.  (b) In the temperature rate 
vs. temperature plot. 
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	Since we have some electrochemical and some exothermic heat sources in the thermal model, the results from the last section have the following physical meaning (Figure 4):



