COMSOL CONFERENCE 2016 MUNICH

Modeling, Simulation and Verification of Contactless Power Transfer Systems

COMSOL Conference, Munich, 2016.

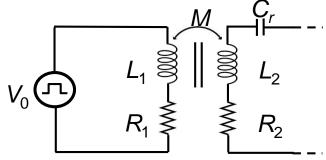
Javier Serrano, Mario Pérez-Tarragona, Claudio Carretero and Jesús Acero.

Department of Electronic Engineering and Communications, University of Zaragoza

Components and operating principle

- Primary coil
- Secondary coil
- Flux concentrators

- Lenz-Faraday
- Inductive coupling


Basic schematic

- Inverter → AC voltage → AC current
- Loosely coupled transformer
- Receiver circuit (resonance capacitor, rectifier and load)

L: Coil inductance

R: Coil resistance

M: Mutual inductance *C_r*: Resonant capacitor

Definitions

• Induction efficiency:

$$\eta = \frac{\mathsf{Transmitted}\,\mathsf{power}}{\mathsf{Total}\,\mathsf{power}}$$

Quality factor:

$$Q_1 = \frac{\omega_0 L_1}{R_1}, \ Q_2 = \frac{\omega_0 L_2}{R_2}, \qquad Q = \sqrt{Q_1 Q_2}$$

Coupling factor:

$$k = \frac{M}{\sqrt{L_1 L_2}}$$

• Maximum efficiency [1]:

$$\eta_{max} = \frac{1}{1 + \frac{2}{(kQ)^2} \left(1 + \sqrt{1 + (kQ)^2}\right)}$$

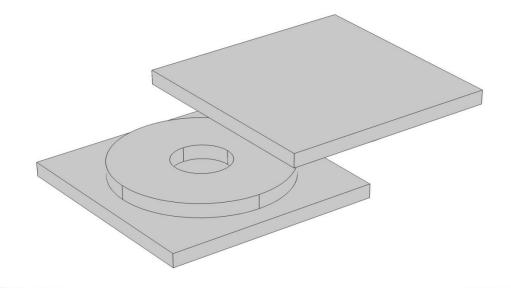
Figures of Merit

•
$$kQ\uparrow$$
 \iff $\eta_{\max}\uparrow$

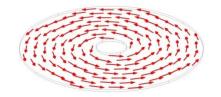
•
$$kQ = \frac{M}{\sqrt{L_1 L_2}} \sqrt{\frac{(\omega_0 L_1)(\omega_0 L_2)}{R_1 R_2}}$$
.

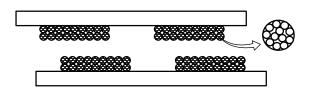
Objective:

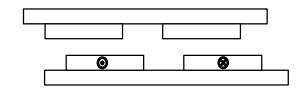
Accurately predict the values of R_1 , R_2 , L_1 , L_2 and M.


Simulation in COMSOL

- AC/DC module Magnetic Fields
- Frequency domain
- 2D Axisymmetric simulation if coils are aligned (same revolution axis)
- 3D simulation if coils are misaligned (different revolution axes)


Geometry and materials


- Ring-type inductors.
 - Ideal non-lossy material ($\sigma \approx 0$ S/m, $\mu = 1$)
- Ferrite blocks
 - $-\sigma \approx 0 \text{ S/m}, \mu = 2000$



Physics – AC/DC Magnetic Fields

- Primary coil: External current density
 - Assuming multi-stranded Litz wire the current across the inductor's cross-section can be assumed constant.

Induced voltage calculation

COMSOL

•
$$V(\omega) = -\iint \vec{\mathbf{E}}(\omega) \cdot \vec{dl} = -\frac{1}{S_{\text{turn}}} \int_{V_{\text{coil}}} \mathbf{E}_{\varphi}(\omega) dV$$

- Advisable to work in 2 physics:
- mf1
 - Set 1 A in coil 1
 - Obtain V in both coils

- mf2
 - Set 1 A in coil 2
 - Obtain V in both coils

Inductance calculation

•
$$L(\omega) = \frac{\Im(Z(\omega))}{\omega}$$

mf1

$$L_{1}(\omega) = \frac{\Im(V_{1}(\omega)/I_{1}(\omega))}{\omega}$$

$$M(\omega) = \frac{\Im(V_2(\omega)/I_1(\omega))}{\omega}$$

mf2

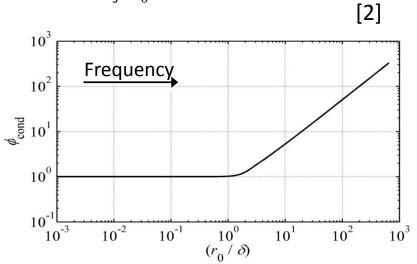
$$L_2(\omega) = \frac{\Im(V_2(\omega)/I_2(\omega))}{\omega}$$

$$M(\omega) = \frac{\Im(V_1(\omega)/I_2(\omega))}{\omega}$$

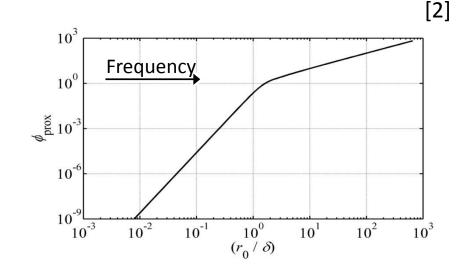
Resistance calculation

• Resistance of Litz wire: $R_w = R_{cond} + R_{prox}$

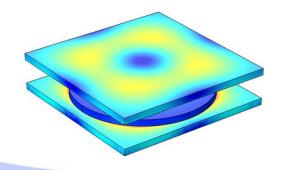
- Dc and skin effect losses: R_{cond}
 - Caused by the current driven when applying an <u>external voltage</u>

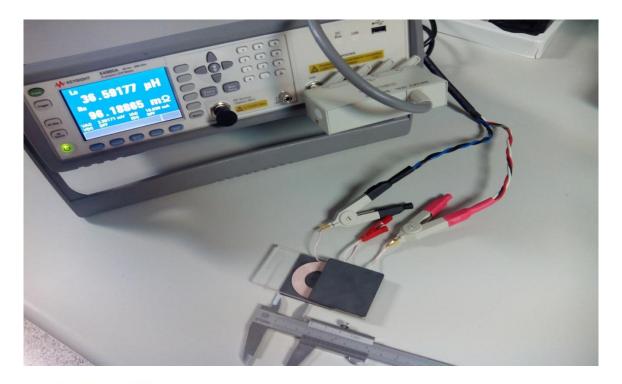


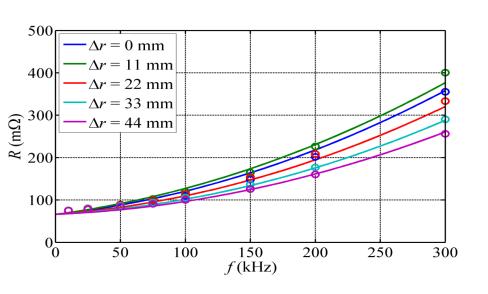
- Proximity effect: R_{pro}
 - Caused by the current induced by neighboring conductors

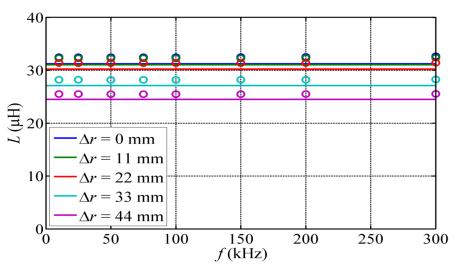

Resistance calculation

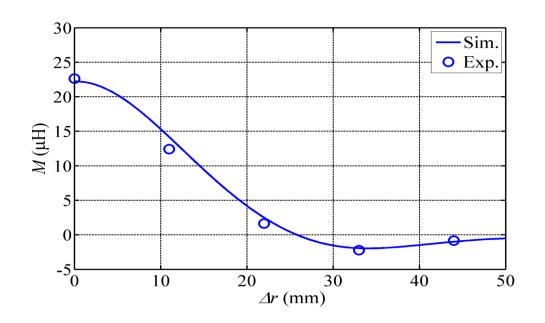
COMSOL


•
$$R_{cond} = \frac{nI_{avg}}{n_s \pi r_0^2 \sigma} \Phi_{cond}(r_0 / \delta)$$


•
$$R_{prox} = \frac{n^3 n_s 4\pi}{\sigma} \Phi_{prox} (r_0 / \delta) \langle |\overline{H}_t|^2 \rangle_{coil}$$


- 2 identic coils: $R_1 = R_2$ and $L_1 = L_2$
- 20 turns of 105 strands (Ø 80um)
- Ext. radius: 22 mm Int. radius: 10.12 mm.
- Coil separation: 4 mm.





Conclusions

- Accurate results with low computational cost (cabling structure is not simulated).
- Flexible and versatile:
 - Multi-coil WPT systems
 - Different cabling structures
 - solid wire, litz wire, PCB tracks...
 - Induction heating

Thanks for your attention!

Javier Serrano

jserrano@unizar.es

