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Introduction

Stress

Softening

 What is a quasi-brittle material?
— Strain softening
— Fracture process zone (FPZ)
— Strong deterministic size effect

 All models presented are applicable to such materials
but the presentation will focus on concrete

— Other examples are rocks, ceramics, ice ...
« Why analyze cracking of concrete?
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Isotropic Damage Mechanics

» Progressive loss of material integrity due to 'ﬂﬁT

propagation of material defects

— For example voids, cracks ... .ﬂ@].
 Leads to a degradation of the macroscopic stiffness  concrete = cement matrix + aggregates

— Non-linear response e e .
e W0e) he 109

- The intact material carries a stress o, often called o el (T (6o

the effective stress AT S B S
«  Over a unit volume of material the stress is then: o] 3

c=(1-w)o
4
where (1 — w) describes the relative amount of
intact material, ie. 0 <w <1 1 H

In a general formulation of damage mechanics, the scalar (1 — w) is replaced by a 4" order tensor




Isotropic Damage Mechanics

* Quasi-static formulation of the momentum balance and small
strain kinematics:

V-6+F, =0 e=_(Vu+VuT); +B.C,

« Assuming that the intact material is linear elastic, the constitute
equation is given as:

c=(1-w)e=0—-w)C,:¢

 The non-linear response of the material is thus given by the
evolution of the damage parameter w



Isotropic Damage Mechanics

A formulation following the framework by Oliver et al. (1990)
Loading function f with the internal variable k:

fle,k) =EE€)+K<0 ?2
» The elastic domain is controlled by the equivalent strain &: >0,
1 1
£(e) = El I_nax (Cepz &) = El I:n (U)I
« Loading/unloading conditions on the Kuhn-Tucker form: A
f<0, k=0,kf=0 0
(O]
« Damage evolution law w (k) for exponential softening: &
a)(lc)=1—g—0exp (—K_EO) >
K f Strain

In the Paper an additional defintion of & is given and also another damage evolution law w(x)



Example from Jirasek (2011)

Iy Constitutive behavior

Lack of mesh objectivity f

« The stress-strain formulation leads to a strong
mesh dependency of results

EO E' €

— No converging result upon mesh refinement

Strain profile

number of

« Strains will localize in the narrowest possible slements
region, i.e. a single element 5

« The amount of energy dissipated decrease with & i ,
the element size L x

- Eventually the response becomes unstable | [oreedspiacementrespense

numbser of slements

) 1

More information is needed about the material s
and/or fracture process in needed!!!

3




Local formulation

« Crack-band method by Bazant and Oh (1983) X
« At each material point (Gauss point): :

— Supply information about the simulated FPZ,
the crack-band width hy

— Construct unique stress-strain law from a
stress-crack opening law given by G¢
Max principal

NN gf — Gf/(ﬁhb) + 80/2 strain / crack

Crack opening direction
direction ~J".

* How to find an appropriate value of h,?

 Depends on for example interpolation order,
element size and shape and the stress sate

* Here a projection method is used as proposed by
Cervenka et al. (1990) "




Non-local formulation

Closed microcracks

* Supply information about the material structure
- Width of the experimentally observed FPZ

* Non-local continuum that averages some variable/s over its Fracture process zone
spatial neighborhood

» Following Peerlings et al. (1996), higher order gradients are
introduced in the constitutive law

— Non-local equivalent strain € calculated as:

§—cV?e=&withthe B.C.Vé-n=0

which replaces its local counterpart in the loading function
— Parameter ¢ can be related to the width of the FPZ
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Implementation in Comsol Multiphysics

* Implemented in Comsol v5.2 (v5.2a)
e Utilizes the Linear Elastic material model of the Solid
Mechanics interface, but:

— Introduces a new stress dmg.Slxx (a) which replaces the g —
default stress solid.slxx (&) in the weak expression 1-w

o

 This new stress is defined using equation-based-modelling:

— Domain ODE with the internal variable at the previously
converged step k.4 as dependent variable

— Discretized using Gauss point data shape functions
— Previous solution node
— The current state of damage calculated as k = max(&, k4 )



Implementation in Comsol Multiphysics

« o calculate the crack-band width using the projection method
the atlocal operator is used to obtain information about

element coordinates and stress states

e The non-local model introduces an additional PDE to be solved
with the non-local equivalent strain € as dependent variable.

- Discretized using Lagrange shape functions

* Only major difference is in the variable definition of

Local Non-local
K = max (&, K,y ) K = max(&, K,y )



Custom physics interface

4 9 Component1 (compl)
= Definitions
/A Geometry 1

» Created using the Physics Builder ' Materals

4 Solid Mechanics (solid,
o Linear Elastic Material 1
—J Freel

* Currently includes several definitions of: o
4 Foution Vie
4% Isotropic Continuum Damage (dmg3)

 The equivalent strain & 2B Domage

& Initial Values 1

« The damage evolution law w (k) T
* Local VerSIOn Override and Contribution S overnaeand Conrbuon

« Different regularization techniques ™

Equivalent Strain: Equivalent Strain:
% | Rankine
Tension softening:
Exponential

« Non-local version:
* One additional material parameter .. ==

fe  2[MPa] N/m? Gr  1000)/m"2] m?
Fracture Energy: Non-local model
Gr 1000)/m*2] Jm? Internal length:

Iy 1fem] m

 Both versions in the same interface

Local version Non-local version
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Plain Concrete — Uniaxial tension

-« I— ] —>

-
1

—Non-local
—NL dmg
—Local

» Extension of a bar by a prescribed displacement
« Highlight the differences of the two formulations

» Tensile strength of a single element (red) reduced

by 5 % to force strains to localize
* Local model: T ; .
— Strains localize in one element x-coordinate [m]

— Load-displacement curve has the same shape
as the strain softening curve

 Non-local model:
— Strain localization distributed over elements
— Load-displacement curve influenced by the 0

o o o
BN (o)) o]
1 1 1

Normalized strain [-]

o
N
h

o
1

— Local
—Non-local

Load [kN]
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Plain Concrete — Uniaxial tension
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« Test series by Arrea and Ingraffea (1982)

* Notched beam under 4-point bending to
simulate a curved crack trajectory

« Local and Non-local model with same
mesh (7.5 mm) and material parameters

— NL model uses quadratic interpolation

« NL gives better estimate of peak load but
underestimates the softening

— Due to difference in crack trajectory?

Local model

224

82

Plain Concrete — Mixed mode fracture
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Plain Concrete — Mixed mode fracture

Local model

Non-local model

=== [ xtent of damage H




Reinforced concrete — 4-point bending

Application of the implemented model to a more complicated problem
— Only Local model

— Both tensile and compressive damage

Heavily reinforced concrete beam tested by Leonhardt (1972)

— Failure due to inclined crack from support to load point
Reinforcement remain elastic, included as truss elements

Triangular grid to minimize the mesh bias of cracks, ~15 mm

_ F
depth=190 Reinforcement [mm]

symmetry

- T 50




Reinforced concrete — 4-point bending

« First inclined crack agrees with the maximum reported load
 Followed by additional inclined cracks
« “Ultimate” failure due to combination of inclined cracks and chrushing

Deflection = 2.4 mm
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Conclusions

* Implementation of an isotropic damage mechanics model to
complement the solid mechanics features of Comsol Multiphysics

« Enables efficient analysis of cracking in quasi-brittle materials
 The model is introduced in a custom physics interface

« Two different regularization techniques are studied to ensure mesh
objectivity of solutions during strain localization

 The model is applied to both plain and reinforced concrete with
good agreement between simulated and experimental results
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