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Introduction
• What is a quasi-brittle material?

− Strain softening 
− Fracture process zone (FPZ)
− Strong deterministic size effect

• All models presented are applicable to such materials 
but the presentation will focus on concrete
− Other examples are rocks, ceramics, ice …

• Why analyze cracking of concrete?
− Failure
− Performance
− Durability
− …
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Isotropic Damage Mechanics
• Progressive loss of material integrity due to 

propagation of material defects
− For example voids, cracks … 

• Leads to a degradation of the macroscopic stiffness
→ Non-linear response

• The intact material carries a stress 𝛔", often called 
the effective stress

• Over a unit volume of material the stress is then:

𝝈 = 1 − 𝜔 𝛔"

where 1 − 𝜔 	describes the relative amount of 
intact material, i.e. 0 ≤ 𝜔 ≤ 1

concrete = cement matrix + aggregates

In a general formulation of damage mechanics, the scalar 1 − 𝜔 is replaced by a 4th order tensor 



Isotropic Damage Mechanics
• Quasi-static formulation of the momentum balance and small 

strain kinematics:

𝛻 , 𝛔 + 𝐅/ = 𝟎; 𝛆 = 2
3
𝛻𝐮 + 𝛻𝐮5 ; + B.C.

• Assuming that the intact material is linear elastic, the constitute 
equation is given as:

𝛔 = 1 − 𝜔 𝛔" = 1 − 𝜔 𝐂78: 𝛆

• The non-linear response of the material is thus given by the 
evolution of the damage parameter 𝜔



Isotropic Damage Mechanics
• A formulation following the framework by Oliver et al. (1990)
• Loading function 𝑓 with the internal variable 𝜅:

𝑓 𝛆,𝜅 ≡ 𝜀̃ 𝛆 + 𝜅 ≤ 0

• The elastic domain is controlled by the equivalent strain 𝜀̃: 

𝜀̃ 𝛆 =
1
𝐸 max
DE2,3,F

𝐂78: 𝛆 D =
1
𝐸 max
DE2,3,F

𝜎 D

• Loading/unloading conditions on the Kuhn-Tucker form:
𝑓 ≤ 0, 𝜅̇ ≥ 0, 𝜅̇𝑓 = 0

• Damage evolution law 𝜔 𝜅 for exponential softening:

𝜔 𝜅 = 1−
𝜀J
𝜅 exp −

𝜅 − 𝜀J
𝜀M

In the Paper an additional defintion of 𝜀̃ is given and also another damage evolution law 𝜔 𝜅



• The stress-strain formulation leads to a strong 
mesh dependency of results
− No converging result upon mesh refinement

• Strains will localize in the narrowest possible 
region, i.e. a single element

• The amount of energy dissipated decrease with 
the element size
− Eventually the response becomes unstable

• More information is needed about the material 
and/or fracture process in needed!!!

Lack of mesh objectivity Constitutive behavior

Strain profile

Force-displacement response

Example from Jirásek (2011)



• Crack-band method by Bažant and Oh (1983)
• At each material point (Gauss point):

→ Supply information about the simulated FPZ, 
the crack-band width ℎO

→ Construct unique stress-strain law from a 
stress-crack opening law given by 𝐺Q

→ 𝜀M = 𝐺Q/(𝑓TℎO) + 𝜀J/2
• How to find an appropriate value of ℎO?

• Depends on for example interpolation order, 
element size and shape and the stress sate

• Here a projection method is used as proposed by 
Cervenka et al. (1990)

Local formulation



Non-local formulation
• Supply information about the material structure

− Width of the experimentally observed FPZ
• Non-local continuum that averages some variable/s over its 

spatial neighborhood
• Following Peerlings et al. (1996), higher order gradients are 

introduced in the constitutive law
− Non-local equivalent strain 𝜀 ̅ calculated as:

𝜀 ̅ − 𝑐𝛻3𝜀 ̅ = 𝜀̃ with the B.C. 𝛻𝜀̅ , 𝐧 = 0

which replaces its local counterpart in the loading function
− Parameter 𝑐 can be related to the width of the FPZ
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Implementation in Comsol Multiphysics
• Implemented in Comsol v5.2 (v5.2a)
• Utilizes the Linear Elastic material model of the Solid 

Mechanics interface, but:
− Introduces a new stress dmg.Slxx (𝝈) which replaces the 

default stress solid.slxx (𝛔") in the weak expression
• This new stress is defined using equation-based-modelling:

− Domain ODE with the internal variable at the previously 
converged step 𝜅Z8[ as dependent variable

− Discretized using Gauss point data shape functions
− Previous solution node
− The current state of damage calculated as 𝜅 = max(𝜀̃, 𝜅\]^ )

𝛔" =
𝝈

1 − 𝜔



Implementation in Comsol Multiphysics

• To calculate the crack-band width using the projection method 
the atlocal operator is used to obtain information about 
element coordinates and stress states

• The non-local model introduces an additional PDE to be solved 
with the non-local equivalent strain 𝜀 ̅ as dependent variable.
- Discretized using Lagrange shape functions

• Only major difference is in the variable definition of 𝜅

𝜅 = max(𝜀̃, 𝜅\]^ ) 𝜅 = max(𝜀 ̅, 𝜅\]^ )
Local Non-local



• Created using the Physics Builder

• Currently includes several definitions of:
• The equivalent strain 𝜀̃
• The damage evolution law 𝜔 𝜅

• Local version:
• Different regularization techniques

• Non-local version:
• One additional material parameter

• Both versions in the same interface

Custom physics interface

Local version Non-local version



Contents
• Introduction
• Isotropic damage mechanics and localization
• Implementation in Comsol Multiphysics
• Examples
• Conclusions



• Extension of a bar by a prescribed displacement
• Highlight the differences of the two formulations
• Tensile strength of a single element (red) reduced 

by 5 % to force strains to localize
• Local model:

− Strains localize in one element
− Load-displacement curve has the same shape 

as the strain softening curve
• Non-local model:

− Strain localization distributed over elements
− Load-displacement curve influenced by the 

development of the localization zone

Plain Concrete – Uniaxial tension



Plain Concrete – Uniaxial tension



Plain Concrete – Mixed mode fracture
• Test series by Arrea and Ingraffea (1982)
• Notched beam under 4-point bending to 

simulate a curved crack trajectory
• Local and Non-local model with same 

mesh (7.5 mm) and material parameters
− NL model uses quadratic interpolation

• NL gives better estimate of peak load but 
underestimates the softening
⎼ Due to difference in crack trajectory?

Local model
Non-local model



Plain Concrete – Mixed mode fracture

Local model

Non-local model
Extent of damage



symmetry

Reinforced concrete – 4-point bending
• Application of the implemented model to a more complicated problem

− Only Local model
− Both tensile and compressive damage

• Heavily reinforced concrete beam tested by Leonhardt (1972)
− Failure due to inclined crack from support to load point

• Reinforcement remain elastic, included as truss elements
• Triangular grid to minimize the mesh bias of cracks, ~15 mm



Reinforced concrete – 4-point bending
• First inclined crack agrees with the maximum reported load
• Followed by additional inclined cracks
• “Ultimate” failure due to combination of inclined cracks and chrushing
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Conclusions
• Implementation of an isotropic damage mechanics model to 

complement the solid mechanics features of Comsol Multiphysics 

• Enables efficient analysis of cracking in quasi-brittle materials

• The model is introduced in a custom physics interface

• Two different regularization techniques are studied to ensure mesh 
objectivity of solutions during strain localization

• The model is applied to both plain and reinforced concrete with 
good agreement between simulated and experimental results



Thank you for your attention!

Tobias Gasch
KTH / Concrete Structures
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